K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Cấu hỏi đâu mà trả lờihum

NV
27 tháng 12 2020

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)

23 tháng 1 2018

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

22 tháng 5 2015

Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)

Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0

=> x+y=0 => z =2015

hoặc y+z=0 => x=2015

hoặc x+z=0 => y=2015

                         Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)

               lik.e nhé!

30 tháng 10 2017

đề có sai k vậy bạn?

8 tháng 1 2018

              \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)

\(\Leftrightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\)\(x^2y+xyz+x^2z+xy^2+xyz+y^2z+x^2z+xyz+xz^2-xyz=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)                  (chỗ này mk lm tắt nha)

\(\Leftrightarrow\)\(x+y=0\)       \(\Leftrightarrow\)   \(z=a\)

          \(y+z=0\)                     \(x=a\)

         \(x+z=0\)                      \(y=a\)

Vậy  tồn tại 1 trong 3 số  x,y,z = a       (đpcm)

18 tháng 1 2016

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

18 tháng 1 2016

em mới học lớp 6 nha

sory