\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)

Dấu "=" \(\Leftrightarrow x=y\)

+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)

\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)

Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" \(\Leftrightarrow x=y=z=1\)

b) Bn đã từng hỏi và cũng là mk trả lời hehe

21 tháng 2 2020

tại mình không làm được ý a) nên mình sao chép cả bài luôn

12 tháng 11 2017

ap dung bdt \(x^{m+n}+y^{m+n}\ge x^my^n+x^ny^m\)  (bn tu cm )

\(\Rightarrow x^7+y^7=x^{3+4}+y^{3+4}\ge x^3y^4+x^4y^3\)

\(\Rightarrow\frac{x^2y^2}{x^2y^2+x^7+y^7}\le\frac{x^2y^2}{x^2y^2\left(1+xy^2+x^2y\right)}=\frac{1}{1+x^2y+y^2x}=\frac{1}{xyz+x^2y+y^2x}=\frac{1}{xy\left(x+y+z\right)}=\)

=\(\frac{z}{xyz\left(x+y+z\right)}=\frac{z}{x+y+z}\)

ttu \(P\le\frac{x+y+z}{x+y+z}=1\) đầu = xảy ra khi x=y=z=1

26 tháng 4 2020

\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)

\(\frac{1}{x^2+y^2+y^2+1+2}+\frac{1}{y^2+z^2+z^2+1+2}+\frac{1}{z^2+x^2+x^2+1+2}\)

\(\le\frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)

\(\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{xyzx+yzx+zx}+\frac{x}{yzx+zx+x}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{x+1+zx}+\frac{x}{1+zx+x}+\frac{1}{zx+x+1}\right)\)

= 1/2

Dấu "=" xảy ra <=> x = y =z =1 

26 tháng 4 2020

Áp dụng BĐT AM-GM ta có:\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}}\)

Tương tự ta cũng có

\(\frac{1}{y^2+2x^2+3}\le\frac{1}{2yz+2z+2};\frac{1}{z^2+2x^2+3}\le\frac{1}{2xz+2x+2}\)

Do đó ta có:\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác, do xyz=1 nên ta có:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{y}{xy+y+1}+\frac{xy}{xy+y+1}\)

\(=\frac{xy+y+1}{xy+y+1}=1\)

\(\Rightarrow VT\le\frac{1}{2}\). Dấu "=" xảy ra <=> x=y=z=1

25 tháng 6 2015

ta có x^2+2y^2+3=x^2+y^2+y^2+1+2>=2xy+2y+2 suy ra1/(x^2+2y^2+3)<=1/2(1/xy+y+1)

cmtt thi M<=1/2(1/(xy+y+1)+...)<=1/2 (ben trong ngoac =1 bien doi tuong duong)

30 tháng 4 2020

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

1 tháng 5 2020

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

NV
21 tháng 5 2019

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\le3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)

\(P=\frac{1}{x+x+y}+\frac{1}{y+y+z}+\frac{1}{x+z+z}\)

\(P\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{z}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{3}}{3}\)

\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)

24 tháng 4 2020

ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng ( a+b)2 \(\ge4ab\)ta có : 

( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)

\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)

                        \(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)

\(\Rightarrow\sqrt{2x-1}\le x\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

        \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)

           \(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

Do đó 

\(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)

Vậy Max A = 3 khi x = y = z = 1

24 tháng 4 2020

Theo Cô-si ta có:

\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)

Xét:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)

\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3