Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)
Dấu "=" \(\Leftrightarrow x=y\)
+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)
\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)
Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Dấu "=" \(\Leftrightarrow x=y=z=1\)
b) Bn đã từng hỏi và cũng là mk trả lời
ap dung bdt \(x^{m+n}+y^{m+n}\ge x^my^n+x^ny^m\) (bn tu cm )
\(\Rightarrow x^7+y^7=x^{3+4}+y^{3+4}\ge x^3y^4+x^4y^3\)
\(\Rightarrow\frac{x^2y^2}{x^2y^2+x^7+y^7}\le\frac{x^2y^2}{x^2y^2\left(1+xy^2+x^2y\right)}=\frac{1}{1+x^2y+y^2x}=\frac{1}{xyz+x^2y+y^2x}=\frac{1}{xy\left(x+y+z\right)}=\)
=\(\frac{z}{xyz\left(x+y+z\right)}=\frac{z}{x+y+z}\)
ttu \(P\le\frac{x+y+z}{x+y+z}=1\) đầu = xảy ra khi x=y=z=1
\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)
= \(\frac{1}{x^2+y^2+y^2+1+2}+\frac{1}{y^2+z^2+z^2+1+2}+\frac{1}{z^2+x^2+x^2+1+2}\)
\(\le\frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)
= \(\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
= \(\frac{1}{2}\left(\frac{zx}{xyzx+yzx+zx}+\frac{x}{yzx+zx+x}+\frac{1}{zx+x+1}\right)\)
= \(\frac{1}{2}\left(\frac{zx}{x+1+zx}+\frac{x}{1+zx+x}+\frac{1}{zx+x+1}\right)\)
= 1/2
Dấu "=" xảy ra <=> x = y =z =1
Áp dụng BĐT AM-GM ta có:\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}}\)
Tương tự ta cũng có
\(\frac{1}{y^2+2x^2+3}\le\frac{1}{2yz+2z+2};\frac{1}{z^2+2x^2+3}\le\frac{1}{2xz+2x+2}\)
Do đó ta có:\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Mặt khác, do xyz=1 nên ta có:
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{y}{xy+y+1}+\frac{xy}{xy+y+1}\)
\(=\frac{xy+y+1}{xy+y+1}=1\)
\(\Rightarrow VT\le\frac{1}{2}\). Dấu "=" xảy ra <=> x=y=z=1
ta có x^2+2y^2+3=x^2+y^2+y^2+1+2>=2xy+2y+2 suy ra1/(x^2+2y^2+3)<=1/2(1/xy+y+1)
cmtt thi M<=1/2(1/(xy+y+1)+...)<=1/2 (ben trong ngoac =1 bien doi tuong duong)
\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)
Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)
Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)
Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)
Đẳng thức xảy ra khi x = y = z = 1
Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)
=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)
Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)
Vậy MaxA=3 đạt được khi x=y=z=1
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\le3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)
\(P=\frac{1}{x+x+y}+\frac{1}{y+y+z}+\frac{1}{x+z+z}\)
\(P\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{z}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{3}}{3}\)
\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)
ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng ( a+b)2 \(\ge4ab\)ta có :
( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)
\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)
\(\Rightarrow\sqrt{2x-1}\le x\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
\(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)
\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
Do đó
A \(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)
Vậy Max A = 3 khi x = y = z = 1
Theo Cô-si ta có:
\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
Xét:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)
\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3