K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

mik cần gấp gấm cảm ơn trước :))

1 tháng 12 2017

▄︻̷̿┻̿═━一 ============

20 tháng 5 2016

\(P+3=\frac{xy}{1+x+y}+1+\frac{yz}{1+y+z}+1+\frac{xz}{1+x+z}+1\)
\(\frac{xy}{1+x+y}+1=\frac{\left(x+1\right)\left(y+1\right)}{1+x+y}\)
\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(\frac{1}{\left(z+1\right)\left(x+y+1\right)}+\frac{1}{\left(y+1\right)\left(x+z+1\right)}+\frac{1}{\left(x+1\right)\left(y+z+1\right)}\right)\)
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
 

20 tháng 5 2016

dòng cuối cùng sai, sửa :
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
\(P+3\ge\left(3xyz+xy+xz+yz\right)\left(\frac{9}{2\left(3xyz+xy+xz+yz\right)}\right)=\frac{9}{2}\)
\(P\ge\frac{3}{2}\)
dấu "=" xảy ra <=> x=y=z=\(\frac{1+\sqrt{3}}{2}\)

22 tháng 10 2017

Ta có: 

\(3=x+y+z\ge3\sqrt[3]{xyz}\)

\(\Leftrightarrow xyz\le1\)

Ta lại có:

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)

3 tháng 2 2019

AP DUNG BDT CAUCHY-SCHWAR :  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

3 tháng 2 2019

...Cauchy-Schwarz: 

\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)

Giải tiếp t cái dấu = :v

15 tháng 1 2018

bài này bn dùng côsi ngược dấu nhé

15 tháng 1 2018

Áp dụng BĐT AM-GM:

\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)

TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:

\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)

"=" <=> x=y=z=1

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may