Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
Chứng minh tương tự ta có:
\(x^2+z^2-y^2=-2xz\)
\(y^2+z^2-x^2=-2yz\)
\(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)
\(=\frac{xy}{-2xy}+\frac{xz}{-2xz}+\frac{yz}{-2yz}\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Vậy giá trị biểu thức là \(-\frac{3}{2}\)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
bạn lên mạng đánh đề bài kiểu gì cũng có nhé -:)) tớ tìm rồi đấy >_<
\(A=\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}\)
\(=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}\)
\(=\frac{x^3+y^3+y^3}{xyz}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)-3xyz}{xyz}\)( HĐT x3 + y3 + z3 - 3xyz chắc biết rồi ha )
\(=\frac{-3xyz}{xyz}=-3\)( do x+y+z = 0 )
à nhầm dấu tí nhé ._.
\(A=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz}{xyz}=3\)