K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

\(x+y+z=0\\ \Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-z-x\\z=-x-y\end{matrix}\right.\)

\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(-x-y\right)^2}+\dfrac{yz}{y^2+z^2-\left(-y-z\right)^2}+\dfrac{zx}{z^2+x^2-\left(-z-x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(x+y\right)^2}+\dfrac{yz}{y^2+z^2-\left(y+z\right)^2}+\dfrac{zx}{z^2+x^2-\left(z+x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-x^2-2xy-y^2}+\dfrac{yz}{y^2+z^2-y^2-2yz-z^2}+\dfrac{zx}{z^2+x^2-z^2-2zx-x^2}\)

\(=\dfrac{xy}{-2xy}+\dfrac{yz}{-2yz}+\dfrac{zx}{-2zx}\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)

\(=-\dfrac{3}{2}\)

 

15 tháng 3 2016

\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Tuwf ddos suy ra x-y=y-z=z-x=0

3 tháng 8 2017

Áp dụng hàm đẳng thức vào biểu thức trên ta được:

(x-y)^3 +( y-z )^3 +( z-x )^3

=(x^3-3.x^2.y+3.x.y^2-y^3)+(y^3-3.y^2.z+3.y.z^2-z^3)+(z^3-3.z^2.x+3.z.x^2-x^3)

=-3.x^2.y+3.x.y^2-3.y^2.z+3.y.z^2-3.z^2.x+3.z.x^2

=3.(.x^2.y+x.y^2-y^2.z+y.z^2-z^2.x+z.x^2)..

đén đây thì mình chịu, mong bạn thông cảm cho mình nha!(~~__~~)