K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

sai đề rồi;x,y,z>0 thì sao x+y+z=0 đc

25 tháng 4 2023

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

20 tháng 7 2019

Áp dụng: (a + b)² ≥ 4ab Ta có: 
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*)        (Vì x + y + z = 1) 
=> (x + y)/xyz ≥ 4(x + y)²z/xyz      ( Nhân hai vế (*) với (x + y)/xyz) 
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16    (vì (x + y)² ≥ 4xy) 
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1 
=> x = y = 1/4; z = 1/2

20 tháng 7 2019

bn Phùng Gia Bảo nhầm 1 chỗ r nhe

C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)

C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)

22 tháng 9 2023

điểm rơi xấu quá: x=\(\dfrac{\sqrt[3]{9}}{2}\); y=\(\sqrt[3]{9}\), z =\(2\sqrt[3]{9}\) (4x=2y=z)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)