\(\sqrt{2x^2+xy+2z^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2

=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)\(\frac{\sqrt{5}\left(x+y\right)}{2}\)

Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

20 tháng 6 2017

Cộng vế với vế của 3 đẳng thức đã cho ta được:

\(x+y+z-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2012-2\sqrt{y+2012}+1\right)+\left(z-2013+2\sqrt{z-2013}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-1\right)^2=0\\\left(\sqrt{y+2012}-1\right)^2=0\\\left(\sqrt{z-2013}-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)

Thay vào C ta được:

C = (3 - 4)2016 + (-2011 + 2012)2017 + (2014 - 2013)2018

C = 1 + 1 + 1 = 3

20 tháng 6 2017

THÊM

Cho x, y, z thõa mãn đồng thời:
\(3x-2y-2\sqrt{y+2012}+1=0;3y-2z-2\sqrt{z-2013}+1=0;3z-2x-2\sqrt{x-2-2=0.}\)Tính \(C=\left(x-4\right)^{2016}+\left(y+2012\right)^{2017}+\left(z-2013\right)^{2018}\)