Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)
\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge12.4^y\)
\(8^z+8^z+8^2\ge12.4^z\)
Cộng 3 vế BĐT trên => đpcm
Cách làm của bạn đúng nhưng cộng 3 vế của BĐT bạn chưa thể suy ra ĐPCM được.
Cộng 3 vế:
$\Rightarrow 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})(1)$
Mà theo BĐT AM-GM:
$8^x+8^y+8^z\geq 3\sqrt[3]{8^{x}.8^y.8^z}=3\sqrt[3]{8^{x+y+z}}=3.8^2(2)$
Từ $(1);(2)\Rightarrow 3(8^x+8^y+8^z)\geq 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})$
$\Rightarrow 8^x+8^y+8^z\geq 4^{x+1}+4^{y+1}+4^{z+1}$
(đpcm)
\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)
BĐT cần chứng minh trở thành:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Thật vậy, ta có:
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng AM-GM:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)
Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
1) ( x, y, z chứng minh rằng : a) x + y + z xy+ yz + zx b) x + y + z 2xy – 2xz + 2yz c) x + y + z+3 2 (x + y + z) Giải: a) Ta xét hiệu x + y + z- xy – yz - zx =.2 .( x + y + z- xy – yz – zx) =đúng với mọi x;y;z Vì (x-y)2 0 với(x ; y Dấu bằng xảy ra khi x=y (x-z)2 0 với(x ; z Dấu bằng xảy ra khi x=z (y-z)2 0 với( z; y Dấu bằng xảy ra khi z=y Vậy x + y + z xy+ yz + zx Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz =( x – y + z) đúng với mọi x;y;z Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1 = (x-1)+ (y-1) +(z-1) 0 Dấu(=)xảy ra khi x=y=z=1 2) chứng minh rằng :a) ;b) c) Hãy tổng quát bài toángiảia) Ta xét hiệu = = = Vậy Dấu bằng xảy ra khi a=bb)Ta xét hiệu = VậyDấu bằng xảy ra khi a = b =cc)Tổng quát 3) Chứng minh (m,n,p,q ta đều có m+ n+ p+ q+1( m(n+p+q+1) Giải: (luôn đúng)Dấu bằng xảy ra khi 4) Cho a, b, c, d,e là các số thực chứng minh rằng a) b) c) Giải: a) (bất đẳng thức này luôn đúng) Vậy (dấu bằng xảy ra khi 2a=b) b) Bất đẳng thức cuối đúng. Vậy Dấu bằng xảy ra khi a=b=1 c) Bất đẳng thức đúng vậy ta có điều phải chứng minh5) Chứng minh rằng: Giải: a2b2(a2-b2)(a6-b6) 0 a2b2(a2-b2)2(a4+ a2b2+b4) 0Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 6) cho x.y =1 và x>y Chứng minh Giải: vì :xy nên x- y 0 x2+y2 ( x-y) x2+y2- x+y 0 x2+y2+2- x+y -2 0 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh7) 1)CM: P(x,y)= 2)CM: (Text
Sửa đề:
Chứng minh rằng:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)
Ta có:
\(8x+8y+8z=8.\left(x+y+z\right)=8.6=48\)(1)
Áp dụng bất đẳng thức AM-GM ta có:
\(4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+1}.4^{y+1}.4^{z+1}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+y+z+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{6+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^9}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3.64\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge192\)(2)
Dấu "=" sảy ra khi \(x=y=z=2\).
Từ (1) và (2) suy ra:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)(đpcm)
Chúc bạn học tốt!!!
Lời giải:
BĐT cần chứng minh tương đương với:
\((x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\right)\geq (x+y+z)\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
\(\Leftrightarrow 12+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\geq 12+\frac{4x}{y+z}+\frac{4y}{x+z}+\frac{4z}{x+y}\)
\(\Leftrightarrow (\frac{y}{x}+\frac{y}{z}-\frac{4y}{x+z})+(\frac{z}{x}+\frac{z}{y}-\frac{4z}{x+y})+(\frac{x}{y}+\frac{x}{z}-\frac{4x}{y+z})\geq 0\)
\(\Leftrightarrow \frac{y(x-z)^2}{xz(x+z)}+\frac{z(x-y)^2}{xy(x+y)}+\frac{x(y-z)^2}{yz(y+z)}\geq 0\)
(luôn đúng với mọi $x,y,z>0$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$