K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

Nếu biểu thức là: \(P=\dfrac{x^5}{y^3}+\dfrac{y^5}{z^3}+\dfrac{z^5}{x^3}\) thì đề bài sai

Biểu thức này chỉ có min, không có max 

17 tháng 7 2021

Thầy ơi làm sao để xác định đề bài tìm Max hay Min ạ?

4 tháng 4 2017

thi cấp tỉnh mà có bài là quá ngon rồi !

Áp dụng BĐT \((a+b+c)^2 \geq 3(ab+bc+ca)\) ta có:

\(\left(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\right)^2 \geq 3(x^2+y^2+z^2)=9\)

\(\Leftrightarrow \dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x} \geq 3\)

Đẳng thức xảy ra khi \(x=y=z=1\)

4 tháng 4 2017

ukm bài BĐT cũng khá dễ chỉ có mấy câu hình là khoai :D

21 tháng 8 2020

Bài này phải tìm GTLN chứ nhỉ?!

Bạn ơi đây đâu phải toán lớp 9.

Cho gì vậy bạn.

Chứng minh cái gì .

Bạn đăng rõ câu hỏi đi chứ !!!

10 tháng 4 2018

nhìn là biết 

+Ryan Park đăng lên để trêu :D

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)