Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)
Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.
\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)
Đễ thấy \(\frac{1}{z}< 4\)
\(\Leftrightarrow z>0,25\)
Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4
\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0
\(\Rightarrow x\)càng lớn
\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được.
Vậy đề trên là sai.
\(A=\left(\frac{1}{x}+2x\right)+\left(\frac{1}{y}+2y\right)+\left(\frac{1}{z}+2z\right)\)
Ta có BĐT phụ \(\frac{1}{x}+2x\ge\frac{1}{8x^2}+\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(2x-1\right)^2\left(4x-1\right)}{8x^2}\ge0\) ( luôn đúng)
Tương tự ta cũng có:
\(2y+\frac{1}{y}\ge\frac{1}{8y^2}+\frac{5}{2};2z+\frac{1}{z}\ge\frac{1}{8z^2}+\frac{5}{2}\)
Cộng theo vế 3 BĐT trên ta có;
\(A\ge\frac{1}{8}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{5}{2}\cdot3=9\)
Xảy ra khi \(x=y=z=\frac{1}{2}\)
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
Ta co:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)
Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)
Có \(18\ge x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=\left(x^2+y^2+z^2\right)+\left(x+y+z\right)\)
\(\ge\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{4}}{3}-\frac{3}{4}=\frac{\left(x+y+z+\frac{3}{2}\right)^2}{3}-\frac{3}{4}\)
\(\Leftrightarrow\)\(\left(x+y+z+\frac{3}{2}\right)^2\le\frac{225}{4}\)\(\Leftrightarrow\)\(-9\le x+y+z\le6\)
\(B\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{15}=\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=2\)
\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
\(\Leftrightarrow x^2+y^2+z^2+x+y+z\le18\)
Ta có \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)\le18\)
Đặt: \(x+y+z=t>0\Rightarrow\frac{t^2}{3}+t\le18\Leftrightarrow\left(t+9\right)\left(t-6\right)\le0\Rightarrow t\le6\left(t>0\right)\)
\(B=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\ge\frac{9}{2\left(x+y+z\right)+3}=\frac{3}{5}\)
\("="\Leftrightarrow x=y=z=2\)