Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)
\(T=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\) ; x + y + z = 1
\(\Rightarrow T=\frac{x+y+z}{16x}+\frac{x+y+z}{4y}+\frac{x+y+z}{z}\)
\(=\frac{1}{16}+\frac{y}{16x}+\frac{z}{16x}+\frac{x}{4y}+\frac{1}{4}+\frac{z}{4y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=\left(\frac{1}{16}+\frac{1}{4}+1\right)+\left(\frac{y}{16x}+\frac{x}{4y}\right)+\left(\frac{z}{16x}+\frac{x}{z}\right)+\left(\frac{z}{4y}+\frac{y}{z}\right)\) (1)
\(x;y;z>0\Rightarrow\frac{y}{16x};\frac{x}{4y};\frac{z}{16x};\frac{x}{z};\frac{z}{4y};\frac{y}{z}>0\)
áp dụng bđt cô si :
\(\frac{y}{16x}+\frac{x}{4y}\ge2\sqrt{\frac{y}{16x}\cdot\frac{x}{4y}}=\frac{1}{4}\) (2)
\(\frac{z}{16x}+\frac{x}{z}\ge2\sqrt{\frac{z}{16x}\cdot\frac{x}{z}}=\frac{1}{2}\) (3)
\(\frac{x}{4y}+\frac{y}{z}\ge2\sqrt{\frac{z}{4y}\cdot\frac{y}{z}}=1\) (4)
(1)(2)(3)(4) \(\Rightarrow T\ge\frac{1}{16}+\frac{1}{4}+1+\frac{1}{4}+\frac{1}{2}+1\)
\(\Rightarrow T\ge\frac{49}{16}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y}{16x}=\frac{x}{4y}\\\frac{z}{16x}=\frac{x}{z}\\\frac{z}{4y}=\frac{y}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}4y^2=16x^2\\z^2=16x^2\\z^2=4y^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\z=4x\\z=2y\end{cases}}\) có x+y+z = 1
=> x + 2x + 4x = 1
=> x = 1/7
xong tìm ra y = 2/7 và z = 4/7
78r63649jfrc,idkhgyiu0-rpuv,m089bnoigomxkgkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`
Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`
Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$
$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$
$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$
Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$
$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Dự đoán điểm rơi \(x=y=z=1\)
Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)
Ta cần ghép Cô-si \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)
Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)
Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)
Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)
Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)
Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)
Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)
Sử dụng Cauchy Schwarz và AM - GM ta dễ có:
\(P=x+y+\frac{1}{x}+\frac{1}{y}\ge x+y+\frac{4}{x+y}\)
\(=\left[x+y+\frac{1}{4\left(x+y\right)}\right]+\frac{15}{4\left(x+y\right)}\)
\(\ge2\sqrt{\frac{x+y}{4\left(x+y\right)}}+\frac{15}{4\cdot\frac{1}{2}}=\frac{17}{2}\)
Đẳng thức xảy ra tại x=y=1/4