Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
Dấu "=" xảy ra khi \(x=y=z\)
áp dụng bđt bunhia dạng phân thức ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)≥\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9
(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0< =>\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0< =>xy+yz+zx=0\)
Khi đó : \(x^2+2yz=x^2+2yz-xy-yz-zx=x^2-xy+yz-zx=\left(x-z\right)\left(x-y\right)\)
Bằng phép chứng minh tương tự ta được : \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
Đặt \(A=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(< =>-A=\frac{x^2}{\left(x-y\right)\left(z-x\right)}+\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=...\)đến đây nhân tung rồi ghép cặp sẽ ra kq = 1 thì phải
làm luôn đỡ lòng vòng :(
\(=\frac{x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{x^2\left(y-z\right)+zy\left(y-z\right)-x\left(y^2-z^2\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{x^2\left(y-z\right)+zy\left(y-z\right)-x\left(y-z\right)\left(y+z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(y-z\right)\left(x^2+zy-xy-xz\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)
\(< =>-A=-1< =>A=1\)
Đề sai:\(x+y+z=1\)
Đặt \(x^2+2xy=a;y^2+2xz=b;z^2+2xy=c\)
\(\Rightarrow a;b;c>0\) và \(a+b+c=\left(x+y+z\right)^2=1\)
\(\Rightarrow\frac{1}{x^2+2xy}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT AM-GM ta có:\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) vì \(a+b+c=1\)
\(\Rightarrow\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\left(đpcm\right)\)
Đề có j sai đâu đệ haizz
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{9}{x+y+z}\)
\(Apdung:\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{1^2}=9\left(\text{đpcm}\right)\)
\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
\(P=\frac{\left[\left(\frac{x}{\sqrt{x^2+2yz}}\right)^2+\left(\frac{y}{\sqrt{y^2+2xz}}\right)^2+\left(\frac{z}{\sqrt{z^2+2xy}}\right)^2\right]\left[\sqrt{x^2+2yz}^2+\sqrt{y^2+2xz}^2+\sqrt{z^2+2xy}^2\right]}{x^2+2yz+y^2+2xz+z^2+2xy}\)
\(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)(Bunyakovski)
Dấu "=" xảy ra <=> \(\frac{x}{x^2+2yz}=\frac{y}{y^2+2xz}=\frac{z}{z^2+2xy}\Leftrightarrow x=y=z\)
Vậy GTNN P=1 <=> x=y=z
Ngay ở trên hai cái [...] [...] nhân với nhau ấy, tại nó dài quá
Cauchy - Schwarz dạng Engel :
\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra <=> x = y = z = 1/3
Cách khác:
Áp dụng BĐT AM-GM ta có:
\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)
\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)
Dau "=" xay ra khi x = y = z