\(\ge\)8xyz
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Ta có:

\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(x+y+z-x\right)\left(x+y+z-y\right)\left(x+y+z-z\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Cosi ta có :

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\z+x\ge2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\) (ĐPCM)

Dấu bằng xảy ra khi : x=y=z

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

7 tháng 11 2015

Côsi: \(\sqrt{x\left(y+z\right)}=\frac{1}{2\sqrt{2}}.2.\sqrt{2x}.\sqrt{y+z}\le\frac{1}{2\sqrt{2}}\left(2x+y+z\right)\)

\(\Rightarrow\frac{1}{\sqrt{x\left(y+z\right)}}\ge\frac{2\sqrt{2}}{2x+y+z}\)

Tương tự các cái kia.

\(\Rightarrow VT\ge2\sqrt{2}\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)

\(\ge2\sqrt{2}.\frac{9}{2x+y+z+2y+z+x+2z+x+y}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)

7 tháng 11 2015

\(\sum\frac{1}{\sqrt{x\left(y+z\right)}}=\sum\frac{\sqrt{2}}{\sqrt{2x}.\sqrt{y+z}}\ge\sum\frac{2\sqrt{2}}{2x+y+z}\ge2\sqrt{2}.\frac{9}{\sum\left(2x+y+z\right)}=\frac{18\sqrt{2}}{4\left(x+y+z\right)}=\frac{1}{4}\)

19 tháng 5 2016

với a,b dương ta có:

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{\left(a+b\right)ab}\ge\frac{4ab}{\left(a+b\right)ab}\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

dấu "=" xảy ra khi a=b

Áp dụng BĐT trên ta có:

\(\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{xy+xz}\Rightarrow\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{x\left(y+z\right)}\)

Mà x+y+z=4 nên y+z=4-x>0

\(\Rightarrow\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{x\left(4-x\right)}\Rightarrow\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{-x^2+4x-4+4}\Rightarrow\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{-\left(x-2\right)^2+4}\)(*)

vì y+z=4-x>0 nên x(4-x)>0.Suy ra \(4\ge-\left(x-2\right)^2+4>0\)

Do đó \(\frac{4}{-\left(x-2\right)^2+4}\ge1\)(**)

Từ (*) và (**) suy ra \(\frac{1}{xy}+\frac{1}{xz}\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\xy=yz\\x+y+z=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=z=1\end{cases}}}\)(thỏa mãn đk x,y,z>0)

19 tháng 5 2016

Thiên Ngoại Phi Tiên đừng chép bài tao nữa tao xin mày đấy

25 tháng 5 2017

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

25 tháng 5 2017

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

7 tháng 10 2017

nx \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\) 

ap dung bdt \(\left(a+b\right)^2\ge4ab\) ta co \(4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left(y+z+1-z\right)^2\left(1-y\right)=\left(y+1\right)^2\left(1-y\right)\) \(=\left(y+1\right)\left(y+1\right)\left(1-y\right)=\left(y+1\right)\left(1-y^2\right)\le y+1\) =\(y+x+y+z=x+2y+z\left(dpcm\right)\)