Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
v~~ ko thằng admin :(( t làm cái bài này mất gần 30 phút mà bây giờ nó éo hiện câu trả lời của tao ???? hận quá đi
bài này easy lắm bạn ơi :((
áp dụng BDT (Am-ag) mẫu ta có
\(\left(x^2+y^2\right)\ge2\sqrt{x^2y^2}=2xy\) rồi thay vào
suy ra \(\frac{1}{x^2+y^2+2}\le\frac{1}{2xy+2}\)
\(\left(y^2+z^2\right)\ge2yz\)
suy ra \(\frac{1}{y^2+z^2+2}\le\frac{1}{2yz+2}\)
tượng tự vs BDT con lại rồi + vế vs vế ta được
\(VT\le\frac{1}{2xy+2}+\frac{1}{2yz+2}+\frac{1}{2xz+2}=\frac{1}{xy+xy+1+1}+\frac{1}{yz+yz+1+1}+\frac{1}{xz+xz+1+1}\)
gọi cái \(\frac{1}{yz+yz+1+1}+.........=Pain\)
áp dụng cosi sáp cho 4 số ta được
\(\frac{1}{xy+xy+1+1}\le\frac{1}{16}\left(\frac{1}{xy}+\frac{1}{xy}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{yz+yz+1+1}\le\frac{1}{16}\left(\frac{1}{yz}+\frac{1}{yz}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{xz+xz+1+1}\le\frac{1}{16}\left(\frac{1}{xz}+\frac{1}{xz}+\frac{1}{1}+\frac{1}{1}\right)\)
+ vế với vế ta được
\(VT\le Pain\le\frac{1}{16}\left(\frac{2}{xz}+\frac{2}{yz}+\frac{2}{xy}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)\)
\(VT\le PAIN\le\frac{1}{8}\left(\frac{1}{xz}+\frac{1}{yz}+\frac{1}{xy}+1+1+1\right)\)
bây giờ m đi chứng minh cái \(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{xy}\ge3\) chắc là m làm được
áp dụng BDT cô si ta có
\(\frac{1}{xz}+xz\ge2\)
\(\frac{1}{yz}+yz\ge2\)
\(\frac{1}{xz}+zx\ge2\)
+ vế với vế ta được
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+xy+yz+zx\ge6\)
mà đề bài cho xy+yz+xz=3 suy ra
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3\)
nhưng mà nó trái dấu oy :(( kệ nhé cứ thay vào nhé không sao hết bạn oy :)
thay vào ta được
\(VT\le PAIN\le\frac{1}{8}\left(3+3\right)=\frac{3}{4}\)
ĐIỀU CẦN PHẢI CHỨNG MINH :((
Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)
Ta chứng minh \(S=1\) là GTNN của \(S\)
Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)
\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)
\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*
BĐT cuối đúng hay ta có ĐCPM
GTLN là \(\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\) Sách mình ghi thế nhưng không có lời giải li ke nha
Đk: $x\geq \frac{1}{2}$
Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$
$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$
$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$
$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$
Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$
$\Rightarrow $ Pt $(*)$ vô nghiệm
Cho x,y,z>0 thỏa \(x^2+y^2+z^2< =3\)
Tìm GTNN của P= \(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(M=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
\(\ge\frac{\left(1+1+1\right)^2}{1+1+1+xy+yz+xz}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=1\)
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1.