\(\left(x+y\right).\left(y+z\right).\left(z+x\right)\ge8x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)-8xyz\ge0\)

Ta có: \(x+y\ge2\sqrt{xy}\)

          \(y+z\ge2\sqrt{yz}\)

          \(x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left|x\right|\left|y\right|\left|z\right|\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Sửa đề: \((x+y)(y+z)(x+z)\geq 2(1+x+y+z)\)

Áp dụng BĐT AM-GM:

\((x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

\(\Leftrightarrow xyz\leq \frac{(x+y+z)(xy+yz+xz)}{9}\)

Ta thực hiện biến đổi:

\((x+y)(y+z)(z+x)=xy(x+y)+yz(y+z)+xz(x+z)+2xyz\)

\(=(x+y+z)(xy+yz+xz)-xyz\geq (x+y+z)(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}\)

\(\Leftrightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(x+y+z)(xy+yz+xz)\)

Theo hệ quả của BĐT AM-GM:

\((xy+yz+xz)^2\geq 3xyz(x+y+z)=3(x+y+z)\)

\(\Rightarrow xy+yz+xz\geq \sqrt{3(x+y+z)}\)

\(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(x+y+z)\sqrt{3(x+y+z)}\)

Ta sẽ cm \(\frac{8}{9}(x+y+z)\sqrt{3(x+y+z)}\geq 2(1+x+y+z)\)

Đặt \(\sqrt{3(x+y+z)}=t\). Dễ thấy \(x+y+z\geq 3\sqrt[3]{xyz}=3\Rightarrow t\geq 3\)

Ta cần cm \(\frac{8}{9}.\frac{t^2}{3}.t\geq 2(1+\frac{t^2}{3})\Leftrightarrow 8t^3\geq 18(3+t^2)\)

\(\Leftrightarrow (t-3)(8t^2+6t+18)\geq 0\) (luôn đúng với \(t\geq 3\))

Do đó ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

28 tháng 9 2017

BĐT cần chứng minh tương đương

\(VT\ge4\left(x+y+z\right)\)

\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Theo BĐT Cauchy-Schwarz và AM-GM, ta có:

\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)

Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)

Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)

@Phương An

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

26 tháng 7 2017

pt cái (x+y)(y+z)(z+x)=\(2xyz+z^2\left(x+y\right)+x^2\left(y+z\right)+y^2\left(x+z\right)\)

xét hiệu \(\left(x+y\right)\left(y+z\right)\left(x+z\right)-2\left(1+x+y+z\right)=2xyz+z^2\left(x+y\right)+y^2\left(x+z\right)+x^2\left(y+z\right)-2xyz-\left(x+y\right)-\left(y+z\right)-\left(x+y\right)\)\(z^2\left(x+y\right)\ge\left(x+y\right)\)(vì x;y;z>0)

tương tự 

=> đpcm

28 tháng 12 2019

BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)

\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)

\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))

Vậy BĐT đã được chứng minh khi x = y = z

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm