\(\frac{x+y}{x}\)\(+\frac{x+z}{y}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

\(\frac{x+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3\)

\(=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{x+y}{z}+1\right)\)

\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+x}{z}\)

\(=\frac{0}{z}+\frac{0}{y}+\frac{0}{z}\)

\(=0\)

10 tháng 3 2017

= 0 nha!

Mong rằng các bạn sẽ

20 tháng 4 2017

bài 1 ta có x+y+z=0 suy ra y+z=-x 

(-x)2=x2=(y+z)2=y2+2yz+z2

suy ra 

\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)

tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)

bài 2 bạn ghi đề không rõ ràng nên mình không giải

21 tháng 4 2017

Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)

a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)

Biến đổi vế phải thì ta phải suy ra điều phải chứng minh 

b, Ta có: \(a+b+c=0\)thì 

\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)

  ( Vì \(a+b+c=0\)nên \(a+b=-c\))

Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

\(=xyz.\frac{3}{xyz}=3\)

18 tháng 9 2017

Áp dụng bđt AM - GM ta có : 

\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}.x}=\frac{2x^2}{y}\)

\(\frac{y^3}{z^2}+y\ge2\sqrt{\frac{y^3}{z^2}.y}=\frac{2y^2}{z}\)

\(\frac{z^3}{x^2}+z\ge2\sqrt{\frac{z^3}{x^2}.z}=\frac{2z^2}{x}\)

Cộng vế với vế ta được :

\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\)

Ta lại có : \(\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right)^2\)(bunhiacopxki)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\ge2\left(x+y+z\right)\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\ge1\)(đpcm)

25 tháng 11 2017

toán lớp mấy vậy?

25 tháng 11 2017

Lop 8 a!

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi

7 tháng 10 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)