K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

ta có: 

Từ x/3 = y/4 => x/9 = y/12 (1) 

Từ y/3 = z/5 => y/12 = z/20 (2) 

Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20 

Áp dụng TC DTS BN ta có: 

2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3 

Từ 2x/18 = 3 => x = 27 

Từ 3y/36 = 3 => y = 36

Từ x/20 = 3 => z = 60

25 tháng 8 2017

chia hết cho 27 nhé

9 tháng 11 2015

Nếu x,y,z khác số dư khi chia cho 3

+Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x,y đều chia hết cho 3, z không chia hết cho 3=>x+y+z không chia hết cho 3. Do x,y đều chia hết cho 3 nên (x−y)⋮3=>(x−y)(y−z)(z−x)⋮3(Vô lý do (x−y)(y−z)(z−x)=x+y+z)

+Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

   Vậy cả 3 số có cùng số dư khi chia cho 3 =>(x−y)⋮3,(y−z)⋮3,(z−x)⋮3=>(x−y)(y−z)(z−x)⋮27=>(x+y+z)⋮27

DD
5 tháng 6 2021

- Nếu \(x,y,z\)đôi một không cùng số dư khi chia hết cho \(3\), khi đó giả sử \(x\equiv0\left(mod3\right),y\equiv1\left(mod3\right),z\equiv2\left(mod3\right)\).

Ta có: \(VP\equiv0+1+2\equiv0\left(mod3\right)\)

\(VT\)không có thừa số nào chia hết cho \(3\)nên \(VT⋮̸3\)do đó mâu thuẫn. 

- Nếu có hai trong ba số \(x,y,z\)có cùng số dư khi chia cho \(3\).

Khi đó \(VT\)chia hết cho \(3\).

\(VP\)không chia hết cho \(3\)(mâu thuẫn).

Do đó cả \(3\)số \(x,y,z\)có cùng số dư khi chia cho \(3\).

Vậy \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮\left(3.3.3\right)\)

hay ta có đpcm. 

5 tháng 6 2021

Một số nguyên chia cho 3 có số dư là 0,1 hoặc 2

- Nếu x,y,z chia cho 3 có số dư khác nhau 

\(\Rightarrow x-y⋮̸3;y-z⋮̸3;z-x⋮̸3\)còn \(x+y+z⋮3\)

Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)không xảy ra

- Nếu x,y,z chỉ có hai số chia cho 3 có cùng số dư

Không mất tính tổng quát,giả sử là x và y ta có :

\(x-y⋮3,x+y+z⋮̸3\)

Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)cũng không xảy ra

Do đó x,y,z chia cho 3 có cùng số dư 

\(\Rightarrow x-y⋮3;y-z⋮3;z-x⋮3\)

\(\Rightarrowđpcm\)

19 tháng 12 2017

Áp dụng tính chất : 

Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc 

Sử dụng tính chất trên ta được : 

( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x ) 

♥,Nếu x ,y, z có cùng số dư khi chia cho 3 => 

x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết ) 

=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 81 

♥,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3 

=> ( x -y )(y -z )( z -x ) ko chia hết cho 3 

Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2 

=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý ) 

♥,Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y 

=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3 

1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 81 

2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 81 

3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 81 

Tóm lại 3( x -y )(y -z )( z -x ) :/ 81 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 81

áp dụng bđt cô si  ta có:

\(\left(x+y\right)+4\ge4\sqrt{x+y};\left(y+z\right)+4\ge4\sqrt{y+z};\left(z+x\right)+4\ge4\sqrt{z+x}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+12\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\)

\(\Rightarrow24\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\Rightarrow6\ge\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

26 tháng 3 2022

không làm đc thì đừng có vào.

26 tháng 3 2022

không làm đc thì đừng có vào.

14 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).

Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).

Do đó ta chỉ cần chứng minh:

\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).

Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi y = 0; x = z = 1.

 

 

NV
29 tháng 7 2021

\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)

29 tháng 7 2021

em cảm ơn ạ! E ko ngờ lm thế này lun í