K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

C = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> C ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> C max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3

28 tháng 5 2017

 A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z) 
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b 
ta có: 
(x + y + z)^2/4 ≥ x(y + z) 
(x+ y +z)^2/4 ≥ z(y + z) 
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27 
=>Giá trị lớn nhất của  = 27 sẽ xảy ra khi có các trường hợp: 
{x = y + z 
{z = y + z 
Vậy y = 0 và x = z = 3

4 tháng 9 2018

\(A=xy+2yz+3zx=x\left(6-x-z\right)+2\left(6-x-z\right)+3zx\)

\(=-x^2+6x-2z^2+12z=\left(-x^2+6x-9\right)+\left(-2z^2+12z-18\right)+27\)

\(=27-\left(x-3\right)^2-2\left(z-3\right)^2\le27\)

27 tháng 4 2020

từ giả thiết ta có : z = 6 - x - y

Ta có : \(A=xy+z\left(2y+3x\right)=xy+\left(6-x-y\right)\left(2y+3x\right)\)

\(=-3x^2-2y^2-4xy+18x+12y\)

Do đó : \(3A=-9x^2-6y^2-12xy+54x+36y=-9x^2-6x\left(2y-9\right)-6y^2+36y\)

\(=-\left(3x+2y-9\right)^2-2y^2+81\le81\)

\(\Rightarrow A\le27\)

Vậy giá trị lớn nhất của A là 27 \(\Leftrightarrow\hept{\begin{cases}3x+2y-9=0\\y=0\end{cases}\Leftrightarrow x=3;y=0;z=3}\)

23 tháng 4 2016

 F = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z) 
áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b 
ta có: 
(x + y + z)^2/4 ≥ x(y + z) 
(x+ y +z)^2/4 ≥ z(y + z) 
=> F ≤ 3(x + y + z)^2/4 = 3.36/4 = 27 
=> F max = 27 xảy ra khi: 
{x = y + z 
{z = y + z 
<=> y = 0 và x = z = 3

27 tháng 6 2023

Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)

ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si  \(\sqrt{ab}\)\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
               \(\dfrac{P}{\sqrt{2}}\)\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)

21 tháng 7 2021

Đúng thì like giúp mik nha. Thx bạnundefined

NV
21 tháng 7 2021

\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)

\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)

\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)

\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)

8 tháng 5 2018

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)

26 tháng 6 2017

Ta có (x + y +z)² ≥ 0 suy ra x² + y² + z² + 2 ( xy + yz + zx) ≥ 0 

1 + 2 ( xy + yz + zx) ≥ 0 

xy + yz + zx ≥ - 1 / 2 

Thế thì min (xy + yz + zx) = - 1 / 2 khi x+ y + z = 0 và x² + y² + z² = 1 ( ♥ ) 

Lại có I xz I = I x I I z I ≤ 1 / 2 ( x² + z² ) = 1 / 2 ( 1 - y² ) ≤ 1 / 2 

Thế thì min ( xz ) = - 1 / 2 khi x = - z và x² + y² + z² = 1 và y = 0 ( ♣ ) 

Từ ( ♥ ) và ( ♣ ) cho ta 

min ( xy + yz + 2.zx ) = - 1 / 2 - 1 / 2 = - 1 

khi x = √2 / 2 ; y = 0 ; z = - √2 / 2 chẳng hạn 

P/C bạn dựa vào đk x + y + z = 0 ; x² + y² + z² = 1;y = 0 ; x = - z

Image result for hình ảnh động