K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Bạn kia giải sai rồi!! xyz = yxz thì chắc gì x = y = z? Giải: Cộng các đẳng thức trên với nhau ta được: x 2 + y 2 + z 2 = xy + yz + zx ⇔2 x 2 + y 2 + z 2 = 2 xy + yz + zx ⇔ x 2 − 2xy + y 2 + y 2 − 2yz + z 2 + z 2 − 2xz + x 2 = 0 ⇔ x − y 2 + y − z 2 + z − x 2 = 0 Mà:  x − y 2 ≥ 0 y − z 2 ≥ 0 z − x 2 ≥ 0 ⇒ x − y 2 + y − z 2 + z − x 2 ≥ 0 Do đó dấu "=" xảy ra khi ⇔x = y = z 

23 tháng 4 2018

Ta có: \(x^2=yz=>x.x=y.z=\frac{x}{y}=\frac{z}{x}\left(1\right)\)

\(y^2=xz=>y.y=x.z=\frac{x}{y}=\frac{y}{z}\left(2\right)\)

\(z^2=xy=>z.z=x.y=\frac{z}{x}=\frac{y}{z}\left(3\right)\)

\(Từ\left(1\right),\left(2\right),\left(3\right)\)ta được: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

Với \(\frac{x}{y}=1=>x=y\left(4\right)\)

Với \(\frac{y}{z}=1=>y=z\left(5\right)\)

Từ (4) và (5) suy ra: x = y = z

=> Đpcm

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

31 tháng 3 2020

x2 = zy => \(\frac{y}{x}\) = \(\frac{x}{z}\)

y2 = xz => \(\frac{y}{x}\) = \(\frac{z}{y}\)

=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) theo tính chất bắc cầu

=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) = \(\frac{x+y+z}{x+y+z}\) = 1

=> y = x . 1 => y = x

=> x = z . 1 => x = z

=> z = y . 1 => z = y

theo tính chất bắc cầu => x = y = z

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi

10 tháng 2 2016

lm đi r mk cho

10 tháng 2 2016

câu này khó thế cậu 

10 tháng 2 2016

sorry mình không biết câu này