Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
a, cộng vế vs vế của 3 biểu thức ta có :
\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(2\left(x+y+z\right)=-\frac{5}{12}\)
\(x+y+z=-\frac{5}{24}\)
\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)