Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{z}=\frac{1}{4}\Rightarrow\frac{y}{1}=\frac{z}{4}\Rightarrow\frac{y}{3}=\frac{z}{12}\)
=>x=2k;y=3k;z=12k
thay vào ta có:
\(\frac{1}{2k}+\frac{1}{3k}+\frac{1}{12k}=1\)
\(\Rightarrow\frac{1}{2}.\frac{1}{k}+\frac{1}{3}.\frac{1}{k}+\frac{1}{12}.\frac{1}{k}=1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}\right)\frac{1}{k}=1\)
\(\Rightarrow\frac{11}{12}.\frac{1}{k}=1\Rightarrow\frac{1}{k}=\frac{1}{\frac{11}{12}}\)
\(\Rightarrow x=\frac{11}{6};y=\frac{11}{4};z=11\)
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{z}=\frac{1}{4}\Rightarrow\frac{y}{1}=\frac{z}{4}\Rightarrow\frac{y}{3}=\frac{z}{12}\)
\(\Rightarrow x=2k;y=3k;z=12k\)
Thay vào ta có:
\(\frac{1}{2k}+\frac{1}{3k}+\frac{1}{12k}=1\)
\(\Rightarrow\frac{1}{2}.\frac{1}{k}+\frac{1}{3}.\frac{1}{k}+\frac{1}{12}.\frac{1}{k}=1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}\right)\frac{1}{k}=1\)
\(\Rightarrow\frac{11}{12}.\frac{1}{k}=1\Rightarrow\frac{1}{k}=\frac{1}{\frac{11}{12}}\)
\(\Rightarrow x=\frac{11}{6};y=\frac{11}{4};z=11\)
{ x + y + z = 1 (1)
{ x² + y² + z² = 1 (2)
{ x³ + y³ + z³ = 1 (3)
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0
(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0
⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0
@ Nếu x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0
⇒ S = 1
Tương tự cho trường hợp y + z = 0 và z + x = 0
\(\text{A=|x| - |x-2| }\le|x-x+2|=2\)
=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)
đề thiếu bạn ơi cái này phải áp dụng tính chất dãy tỉ số bằng nhau
Bạn ơi đề bài có vậy thôi nha.
Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???