\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

30 tháng 1 2019

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Rightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)\(\Rightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)\(\Rightarrow\)\(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)

\(\Rightarrow A=0\)

30 tháng 1 2019

Sai đề không

26 tháng 2 2018

Áp dụng bđt côsi cho 2 số dương lần lượt ta có : 

\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)

\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)

\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)

Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)

Dấu  = xảy ra khi : \(1=\frac{y}{x}\)=> x=y  và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z

=> x=y=z

Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui