Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)
\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)
\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)
Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)
Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)
Chúc bạn học tốt.
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Trường hợp x=y=z thì không phải bàn,ns cái trường hợp x+y+z=0
\(\frac{1}{x^2+y^2-z^2}=\frac{1}{\left(x+y\right)^2-2xy-z^2}=\frac{1}{\left(-z\right)^2-z^2-2xy}=\frac{1}{-2xy}\)
Tương tự rồi cộng lại thì \(BT=0\) thì phải
Condition\(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)
Put \(P=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)
\(=\frac{1}{x^2+\left(y-z\right)\left(y+z\right)}+\frac{1}{y^2+\left(z-x\right)\left(z+x\right)}+\frac{1}{z^2+\left(x-y\right)\left(x+y\right)}\left(4\right)\)
Because \(x^2+y^2+z^2=3xyz\)
\(\Leftrightarrow x^2+y^2+z^2-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)ư\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{cases}}\)
The first case: If \(x+y+z=0\left(1\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\left(2\right)}\)
From \(\left(1\right)\Rightarrow\hept{\begin{cases}x-y=-2y-z\\y-z=-2z-x\\z-x=-2x-y\end{cases}\left(3\right)}\)
\(\left(2\right)\)and \(\left(3\right)\)into \(\left(4\right)\)we have
\(P=\frac{1}{x^2-x\left(-2z-x\right)}+\frac{1}{y^2-y\left(-2x-y\right)}+\frac{1}{z^2-z\left(-2y-z\right)}\)
\(=\frac{1}{2x^2+2xz}+\frac{1}{2y^2+2xy}+\frac{1}{2z^2+2yz}\)
\(=\frac{1}{2x\left(x+z\right)}+\frac{1}{2y\left(x+y\right)}+\frac{1}{2z\left(z+y\right)}\)
\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)
\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)
\(=\frac{z+x+y}{-2xyz}=0\)( Because x+y+z=0)
The second case:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\left(5\right)\)
We have \(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y,z\\\left(y-z\right)^2\ge0;\forall x,y,z\\\left(z-x\right)^2\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0;\forall x,y,z\left(6\right)\)
From \(\left(5\right),\left(6\right)\)\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)
Because \(x=y=z\Rightarrow x^2=y^2=z^2=xy=yz=zx\)
So \(P=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(=\frac{z+x+y}{xyz}=0\)
So...
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)
\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)
\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)
\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)
\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)
bài này từ giả thiết thì bn liên tưởng đến a3+b3+c3=3abc
mk nghĩ bài này thiếu đk