Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(\frac{y}{2}\) = \(\frac{3z}{5}\) \(\Rightarrow\frac{y}{2}=\frac{z}{\frac{5}{3}}=\frac{y-z}{2-\frac{5}{3}}=\frac{15}{\frac{1}{3}}=45\)
+) \(\frac{3x}{4}=\frac{x}{\frac{4}{3}}\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{\frac{3}{4}}=45\Rightarrow x=27\\\frac{y}{2}=45\Rightarrow y=90\\\frac{z}{\frac{5}{3}}=45\Rightarrow z=75\end{matrix}\right.\)
Gía trị x + y + z = 27 + 90 + 75 = 192
Cho x, y, z thỏa mãn: \(\frac{3x}{4}=\frac{y}{2}=\frac{3z}{5}\) và \(y-z=15\). Giá Trị \(x+y+z\) là:
ta có \(\frac{y}{2}\) =\(\frac{3y}{6}\) =>\(\frac{3x}{4}\) =\(\frac{3y}{6}\) =\(\frac{3z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:(mà y-z=15
\(\frac{3x}{4}\)=\(\frac{3y}{6}\) =\(\frac{3z}{5}\) =\(\frac{3y-3z}{6-5}\)=\(\frac{3\left(y-z\right)}{1}\) =3.15=45
\(\frac{3x}{4}\)=45=>x=\(\frac{45.4}{3}\) =60
\(\frac{3y}{6}\)=45=>y=\(\frac{45.6}{3}\) =90
\(\frac{3z}{5}\)=45=>z=\(\frac{45.5}{3}\) =75
vậy x+y+z=60+90+75=225
Ta có \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{x+y+3z+y+z+3x+z+x+3y}{7+8+10}\)
\(=\frac{5\left(x+y+z\right)}{25}=\frac{x+y+z}{5}=\frac{5}{x+y+z}\)(1)
Từ (1) => (x + y + z)2 = 25
=> \(\orbr{\begin{cases}x+y+z=5\\x+y+z=-5\end{cases}}\)
Khi x + y + z = 5 => \(\frac{5}{x+y+z}=1\)
=> \(\hept{\begin{cases}z+x+3y=10\\y+z+3x=8\\x+y+3z=7\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2y=10\\x+y+z+2x=8\\x+y+z+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}5+2y=10\\5+2x=8\\5+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}y=2,5\\x=1,5\\z=1\end{cases}}\)(tm)
Khi x + y + z = -5 => \(\frac{5}{x+y+z}=-1\)
=> \(\hept{\begin{cases}x+y+3z=-7\\y+z+3x=-8\\z+x+3y=-10\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2z=-7\\x+y+z+2x=-8\\x+y+z+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}-5+2z=-7\\-5+2x=-8\\-5+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}z=-1\\x=-1,5\\y=-2,5\end{cases}}\)(tm)
Vậy các cặp (x;y;z) thỏa mãn là (1,5;2,5;1) ; (-1,5;-2,5;-1)
Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)
=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)
=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)
=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)
=> x = y = z = t = 403
Khi đó A = x + 2y - 3z + t
= x + 2x - 3x + x
= x = 403
Vậy x = 403
Ta có: \(\frac{3x}{4}\)= \(\frac{y}{2}\)= \(\frac{3z}{5}\)
=> \(\frac{1}{3}.\frac{3x}{4}=\frac{1}{3}.\frac{y}{2}=\frac{1}{3}.\frac{3z}{5}\)
\(\Rightarrow\frac{3x}{12}=\frac{y}{6}=\frac{3z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{y-z}{6-5}=15\)
Suy ra:
\(\Rightarrow\)x + y + z = 225