K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

từ đề bài => \(x^2+2y+1+y^2+2z+1+z^2+2x+1=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)=> x=-1; y=-1 và z=-1

A=-1^2016+ -1^2016+ -1^2016=1+1+1=3

5 tháng 7 2015

1/

Đề \(\Rightarrow z^{15}+x^{15}-\left(y^{15}+z^{15}\right)=2\left(y^{2016}-x^{2016}\right)\)

\(\Rightarrow x^{15}-y^{15}=2\left(y^{2016}-x^{2016}\right)\)

+Nếu \(x=y\text{ thì }VT=0=VP\)

+Nếu \(x>y\text{ thì }VT>0>VP\)

+Nếu \(x<\)\(y\) thì \(VT<0\)\(<\)\(VP\)

Vậy \(x=y\)

Làm tương tự, ta có: \(y=z\)

\(\Rightarrow x=y=z\)

\(\Rightarrow x^{15}+x^{15}=2x^{2016}\Leftrightarrow x^{2016}=x^{15}\Leftrightarrow x^{15}\left(x^{2001}-1\right)=0\)

\(\Leftrightarrow x^{2001}=1\text{ (do }x>0\text{)}\)

\(\Leftrightarrow x=1\)

Vậy \(x=y=z=1\)

5 tháng 7 2015

\(1=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}=\left(\frac{x+y}{2}+1\right)^2-1\)

\(\Rightarrow\left(\frac{x+y}{2}+1\right)^2\ge2\Rightarrow\frac{x+y}{2}+1\ge\sqrt{2}\Rightarrow x+y\ge2\sqrt{2}-2\)

\(1=x+y+xy\ge2\sqrt{xy}+xy=\left(\sqrt{xy}+1\right)^2-1\)

\(\Rightarrow\left(\sqrt{xy}+1\right)^2\le2\Rightarrow\sqrt{xy}+1\le\sqrt{2}\Rightarrow\sqrt{xy}\le\sqrt{2}-1\)

\(\Rightarrow xy\le3-2\sqrt{2}\)

\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}=\frac{x+y+xy}{x+y}+\frac{x+y}{xy}\)

\(=1+\left(\frac{xy}{x+y}+\frac{\left(\sqrt{2}-1\right)^2}{4}.\frac{x+y}{xy}\right)+\frac{1+2\sqrt{2}}{4}.\frac{x+y}{xy}\)

\(\ge1+2\sqrt{\frac{xy}{x+y}.\frac{\left(\sqrt{2}-1\right)^2}{4}\frac{x+y}{xy}}+\frac{1+2\sqrt{2}}{4}.\frac{2\sqrt{2}-2}{3-2\sqrt{2}}=\frac{5+5\sqrt{2}}{2}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=\sqrt{2}-1\)

 

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)

11 tháng 1 2018

cộng 3 vế lại cùng 1 lúc ta sẽ có (x+1)2 +(y+1)2+(z+1)2 = 0.

dấu bằng xảy ra khi cả 3 biểu thức bằng 0, suy ra x=y=z= -1

thế vào A thì A= -3

14 tháng 2 2017

Theo bài ra , ta có : 

\(2x^2+2y^2+2x+2y+2xy=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}\Leftrightarrow x=y=-1}\)

Thay x = y = -1 vào A ta được : 

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(\Leftrightarrow A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1^{2016}+0=1\)

Vậy A=1 

Chúc bạn học tốt =)) 

5 tháng 5 2020

bạn chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/60436537466.html

27 tháng 7 2016

1) Từ \(x+y+z=6\)  và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)

Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)

Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.

30 tháng 7 2016

Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm

Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)

-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9

Vậy mệnh đề đúng với n=1

-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó,  \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1

Ta phải cm mệnh đề cũng đúng với k+1:

Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)

<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)

Ta thấy:

\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.

Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3

-1 chia 9 dư -1

Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9

Kết luận: Mệnh đề đúng với mọi n thuộc Z