\(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{-x+2y+2z}{x}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

TH1: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(y+z=-x\)

\(x+z=-y\)

\(\Rightarrow M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\dfrac{-xyz}{8xyz}=\dfrac{-1}{8}\)

TH2: \(x+y+z\ne0\)

\(\Rightarrow2x+2y-z=3\)

\(\Rightarrow2x+2y=4z\)

\(\Rightarrow x+y=2z\)

\(x+z=2y\)

\(y+z=2x\)

\(\Rightarrow M=\dfrac{2z.2y.2x}{8xyz}=1\)

Vậy: \(M=\dfrac{-1}{8}\) hoặc \(1\)

9 tháng 3 2017

Ta có \(\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x+2y-z}{z}=3\\\dfrac{2x+2z-y}{y}=3\\\dfrac{2y+2z-x}{x}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y-z=3z\\2x+2z-y=3y\\2y+2z-x=3x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y=4z\\2x+2z=4y\\2y+2z=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=2z\\x+z=2y\\y+z=2x\end{matrix}\right.\)

Ta có \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}\)

\(\Rightarrow M=\dfrac{2x.2y.2z}{8xyz}=\dfrac{8xyz}{8xyz}=1\)

Vậy \(M=1\)

30 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{-x+2y+2z}{x}=\dfrac{2x+2y-z+2x-y+2z-x+2y+2x}{x+y+z}=\dfrac{3x+3y+3z}{x+y+z}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)

\(\Rightarrow\)\(\dfrac{2x+2y-z}{z}=3\Leftrightarrow2x+2y-z=3z\Leftrightarrow2\left(x+y\right)=4z\Leftrightarrow x+y=2z\Leftrightarrow z=\dfrac{x+y}{2}\)

Tương tự: \(x=\dfrac{y+z}{2}\)

\(y=\dfrac{x+z}{2}\)

Thay vào M, ta được:

\(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(\dfrac{y+z}{2}.\dfrac{x+z}{2}.\dfrac{x+y}{2}\right).8}\)

\(=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8}.8}=1\)

17 tháng 3 2018

TH1 : \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(\Leftrightarrow M=\dfrac{\left(-z\right)\left(-x\right)\left(-y\right)}{8xyz}=\dfrac{-\left(xyz\right)}{8xyz}=\dfrac{-1}{8}\)

Th2 : \(x+y+z\ne0\)

\(\dfrac{2x+2y-z}{z}=\dfrac{2x-2z+y}{y}=\dfrac{2y+2z-x}{x}\)

\(\Leftrightarrow\left(\dfrac{2x+2y-z}{z}+3\right)=\left(\dfrac{2x-2z+y}{y}+3\right)=\left(\dfrac{2y+2z-x}{x}+3\right)\)

\(\Leftrightarrow\dfrac{2x+2y+2z}{z}=\dfrac{2x+2y+2z}{y}=\dfrac{2x+2y+2z}{x}\)

\(\Leftrightarrow x=y=z\)

\(\Leftrightarrow M=\dfrac{2x.2y.2z}{8xyz}=1\)

Vậy \(\left[{}\begin{matrix}M=\dfrac{-1}{8}\Leftrightarrow x+y+z=0\\M=1\Leftrightarrow x+y+z\ne0\end{matrix}\right.\)

17 tháng 3 2018

Tại sao \(\dfrac{2x-2z+y}{y}+3=\dfrac{2x+2y+2z}{y}\)

6 tháng 4 2018

Đề nhảm.a;b;c ở đâu bạn -_-

a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:

\(\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\\\dfrac{y}{2y+x+z}=\dfrac{y}{x+y+y+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)\\\dfrac{z}{2z+x+y}=\dfrac{z}{x+z+y+z}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\end{matrix}\right.\)

Cộng theo vế:

\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z>0\)

b) Áp dụng bất đẳng thức AM-GM:

\(\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le\dfrac{\left(a+b-c+a-b+c\right)^2}{4}=\dfrac{4a^2}{4}=a^2\\\left(a-b+c\right)\left(-a+b+c\right)\le\dfrac{\left(a-b+c-a+b+c\right)^2}{4}=\dfrac{4c^2}{4}=c^2\\\left(a+b-c\right)\left(-a+b+c\right)\le\dfrac{\left(a+b-c-a+b+c\right)^2}{4}=\dfrac{4b^2}{4}=b^2\end{matrix}\right.\)

Nhân theo vế: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c>0\)

17 tháng 4 2018

Phải chứng minh BĐT trung gian: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\forall\) a,b trước khi áp dụng chứ.

9 tháng 11 2017

1+1=3

1234567

8 tháng 11 2017

Bạn xét 2 trường hợp.

Nếu x+y+z=0 thì suy ra x+y=-z;y+z=-x;z+x=-y

Nếu x+y+z khác 0 thì áp dụng tính chất dãy tỉ số bằng nhau

8 tháng 11 2017

mình muốn hỏi cách tính x+y+z=0 cơ

26 tháng 2 2017

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)

\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)

\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)

1 tháng 9 2019

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)

=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\) 

Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)

=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)

=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)

=> A = \(8+2020=2028\)