\(\sqrt{ }\) x-1 + 4\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) ( Sửa đề )

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\left(x\ge1;y\ge2;z\ge3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(TM\right)\\y=6\left(TM\right)\\z=12\left(TM\right)\end{matrix}\right.\)

KL..........

17 tháng 7 2018

bn có ghi sai đề k v

11 tháng 6 2019

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)

11 tháng 6 2019

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)

\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )

Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

từ đó tìm được : \(x=2;y=6;z=12\)

4 tháng 7 2016

Giải xong rồi

(x;y;z)=(2;6;12) 

OKhaha

4 tháng 7 2016

Bạn nào làm xong rồi thì xem mình ra kq đúng chưa nhaok

11 tháng 10 2018

c) theo bunhia ta có:

\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)

\(\Rightarrow VT\le\sqrt{6}\)

13 tháng 10 2018

bạn giải hẳn ra đc k?

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

DD
12 tháng 7 2021

ĐK: \(x\ge1,y\ge2,z\ge3\).

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)

1 tháng 10 2018

\(ĐKXĐ:x\ge1;y\ge2;z\ge3\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}\cdot1+1\right]+\left[\left(y-2\right)-2\cdot\sqrt{y-2}\cdot2+4\right]+\left[\left(z-3\right)-2\cdot\sqrt{z-3}.3+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

13 tháng 6 2021

Mình cũng học lớp 9 nhưng mk ko biết làm bài này.

13 tháng 6 2021

Đk: \(-1\le x,y,z\le1\)

Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)

CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)

\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)

=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)

VP = 3/2

=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)

<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)