Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)
\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)
xyz=1
=>x=1,y=1,z=1
Thay x=1,y=1,z=1 vào P ta được:
P=(119-1)(15-1)(11890-1)=0