Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x+y)(z-x)=(x+z)(x-y)
x(z-x)+y(z-x)=x(x-y)+z(x-y)
zx-x^2+yz-xy=x^2-xy+zx-yz
(yz+yz)+(zx-zx)=(x^2+x^2)-(xy-xy)
2yz=2x^2
=>yz=x^2
nên x^2-yz=0
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\)
\(\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}\Rightarrow x-y=\frac{y-z}{yz}\)
Tương tự: \(y-z=\frac{z-x}{xz},z-x=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{yz}.\frac{z-x}{xz}.\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)(1)
Mà x,y,z đoi 1 khác nhau nên: \(x-y\ne0,y-z\ne0,z-x\ne0\)(2)
Từ (1) và (2) ta được: \(1-\frac{1}{x^2y^2z^2}=0\Rightarrow x^2y^2z^2=1\)
Vậy \(A=x^4y^4z^4=\left(x^2y^2z^2\right)^2=1^2=1\)
Chúc bạn học tốt.
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}\)
\(\Rightarrow\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}\)
\(\Rightarrow\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\)
\(\Rightarrow\left(\frac{x-z}{-2}\right)^3=\left(\frac{x-y}{-1}\right)^2.\left(\frac{y-z}{-1}\right)\)
\(\Rightarrow\frac{\left(x-z\right)^3}{\left(-2\right)^3}=\frac{\left(x-y\right)^2}{\left(-1\right)^2}.\frac{\left(y-z\right)}{-1}\)
\(\Rightarrow\left(x-z\right)^3=8.\left(x-y\right)^2.\left(y-z\right)\)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)
M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
Đề sai nhé mẫu mũ 2010 => M =1 mới đúng
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)
đặt x=1998k;y=1999k;z=2000k
=>(x-y)3=(1998k-1999k)3=-k3
8(x-y)2(y-z)=8.k2.-k=-8k3
=>đề bài sai
=>bạn đăng câu hỏi sai