Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên ta chứng minh với x,y,z,t bất kì thì:
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)
thật vậy bđt (*) tương đương với:
\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)
bđt trên đúng vì theo bđt bunhia cốp xki
\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)
Áp dụng (*) ta có:
\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)
\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)
Ta có:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)
Dấu bằng xảy ra khi x=y=z=1
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
Kiểu BĐT bất đối xứng kết quả cực xấu, mình nêu hướng chung, bạn tự giải, chứ kết quả toàn căn thức nhìn đã mất cảm tình rồi:
Ở ngoài nháp, phân tích như sau:
Dự đoán điểm rơi \(x=z\)
Ta thiết lập lần lượt các đánh giá:
\(a\left(x^2+z^2\right)\ge2axz\) ; \(x^2+b^2y^2\ge2bxy\); \(z^2+b^2y^2\ge2byz\) (1)
Cộng vế với vế:
\(\left(a+1\right)x^2+2b^2y^2+\left(a+1\right)z^2\ge2bxy+2byz+2axz\)
Để vế trái là \(k.P\) và vế phải là \(n\left(xy+yz+3xz\right)\) thì:
\(\left\{{}\begin{matrix}a+1=2b^2\\\frac{a}{b}=\frac{3}{1}\end{matrix}\right.\) \(\Leftrightarrow2b^2-3b-1=0\Rightarrow b=\frac{3+\sqrt{17}}{4}\Rightarrow a=\frac{9+3\sqrt{17}}{4}\)
Vậy là xong, thay lần lượt a; b vừa tìm được vào (1) và làm vào giấy:
\(\frac{9+3\sqrt{17}}{2}\left(x^2+z^2\right)\ge\left(9+3\sqrt{17}\right)xz\)
....
Tương tự và cộng lại sau đó chia vế phải cho \(a+1=...\) là xong