Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)
Khi đó bất đẳng thức tương đương với
\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)
Mà ta có
\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)
Ta cần chứng minh
\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)
Vậy ta có điều phải chứng minh
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
Bạn tham khảo tại đây:
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)
Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)
Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)
\(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)
So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)
Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)
Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)
Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).
Theo gt ta có \(a+b\le1\).
BĐT cần chứng minh tương đương:
\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).
Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).
Cộng vế với vế của các bđt trên lại ta có đpcm.
Đặt \(x=\dfrac{c^2}{ab}\); \(y=\dfrac{a^2}{bc}\); \(z=\dfrac{b^2}{ac}\)
\(\Rightarrow xyz=1\) là điều hiển nhiên
BĐT cần chứng minh tương đương
\(\dfrac{\left(\dfrac{c^2}{ab}\right)^2}{\left(\dfrac{c^2}{ab}-1\right)^2}+\dfrac{\left(\dfrac{a^2}{bc}\right)^2}{\left(\dfrac{a^2}{bc}-1\right)^2}+\dfrac{\left(\dfrac{b^2}{ac}\right)^2}{\left(\dfrac{b^2}{ac}-1\right)^2}\ge1\)
\(\Leftrightarrow\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge1\)
Áp dụng BĐT C.B.S
\(\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\)ta phải chứng minh:
\(\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\ge1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge a^4+b^4+c^4+a^2b^2+b^2c^2+a^2c^2-2\left(abc^2+a^2bc+b^2ac\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)\ge0\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge0\) ( luôn đúng )