Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)
\(\Rightarrow0< x^2+y^2+z^2\le4\)
Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)
Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)
\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)
Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\)
\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)
\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)
\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)
Vậy ....................
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡
có cách nào không dùng hàm k ???
1)
+) Ta có
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) ( đpcm )
+ ) Theo phần trên
\(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow ab\le\frac{1}{4}\left(a+b\right)^2\) ( đpcm )
2,
Ta có: \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\Leftrightarrow5x^2-9x\left(y+z\right)+5\left(y+z\right)^2=28yz\le7\left(y+z\right)^2\)\(\Leftrightarrow5x^2-9x\left(y+z\right)-2\left(y+z\right)^2\le0\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}-2\le0\)\(\Leftrightarrow\left(5.\frac{x}{y+z}+1\right)\left(\frac{x}{y+z}-2\right)\le0\Leftrightarrow\frac{x}{y+z}\le2\)(Do \(5.\frac{x}{y+z}+1>0\forall x,y,z>0\))
\(\Rightarrow E=\frac{2x-y-z}{y+z}=2.\frac{x}{y+z}-1\le2.2-1=3\)
Đẳng thức xảy ra khi \(y=z=\frac{x}{4}\)
Gọi cái biểu thức đó là P nha
Trước tiên chứng minh:
\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\left(\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right)=0\)
\(\Leftrightarrow\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Leftrightarrow x-y+y-z+z-x=0\)( đúng )
Giờ ta quay lại bài toán ban đầu
Ta có:
\(\Leftrightarrow2P=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{4}\)
Để lên lớp 9 rồi em giải cho
Mà em thấy CTV đâu rồi nhỉ
Các bn CTV phải giúp đỡ tình trạng thế này nhé
Chúc bn hok giỏi , sớm có người giải cho bn bài này
https://olm.vn/hoi-dap/tim-kiem?id=199649&subject=1&q=+++++++++++Cho+x,y,z%3E0.+Th%E1%BB%8Fa+m%C3%A3n:+x+y+z+%E2%88%9Axyz=4++T%C3%ADnh+Gi%C3%A1+tr%E1%BB%8B+c%E1%BB%A7a+bi%E1%BB%83u+th%E1%BB%A9c:A=%E2%88%9Ax(4%E2%88%92y)(4%E2%88%92z)+%E2%88%9Ay(4%E2%88%92z)(4%E2%88%92x)+%E2%88%9Az(4%E2%88%92x)(4%E2%88%92y)%E2%88%92%E2%88%9Axyz++++++++++
Bạn tự tham khảo nhé
Ta có \(4x+4y+4z+4\sqrt{xyz}=16\Rightarrow4x+4\sqrt{xyz}+yz=yz-4y-4z+16\)
=> \(\left(2\sqrt{x}+\sqrt{yz}\right)^2=\left(4-y\right)\left(4-z\right)\Rightarrow\sqrt{\left(4-y\right)\left(4-z\right)}=2\sqrt{x}+\sqrt{yz}\)
=> \(\sqrt{x}\sqrt{\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)
Tương tự, rồi cộng lại, ta có
\(S=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=8\)
Vậy S=8
^_^
Ta có : \(P=x^3+x^2y+y^3+y^2z+z^3+z^2x\)
\(=x^3+y^3+z^3+x^2y+y^2z+z^2x\)
Áp dụng BĐT Cô-si cho 3 số, ta có : \(x^2y=x.x.y\le\frac{x^3+y^3+z^3}{3}\)
tương tự : \(y^2z\le\frac{y^3+y^3+z^3}{3}\); \(z^2x\le\frac{z^3+z^3+x^3}{3}\)
\(\Rightarrow x^2y+y^2z+z^2x\le\frac{3\left(x^3+y^3+z^3\right)}{3}=x^3+y^3+z^3\)
\(\Rightarrow P\le2\left(x^3+y^3+z^3\right)\)
Áp dụng BĐT Cô-si cho 4 số, ta có : \(x^4+x^4+x^4+1\ge4\sqrt[4]{\left(x^4\right)^3.1}=4x^3\)
\(\Rightarrow3x^4+1\ge4x^3\)
Tương tự : \(3y^4+1\ge4y^3;3z^4+1\ge4z^3\)
Cộng lại theo vế, ta được : \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\)
\(\Rightarrow2P\le4\left(x^3+y^3+z^3\right)\le3\left(x^4+y^4+z^4\right)+3=12\)
\(\Rightarrow P\le6\)
Vậy GTLN của P là 6 khi x = y = z = 1
Giả sử \(y=min\left\{x,y,z\right\}\)
\(\le\frac{3}{2}\left(x^4+y^4+z^4+1\right)=6\)
Đẳng thức xảy ra khi \(x=y=z=1\)