\(\dfrac{1}{16x}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)(x+y+z)\geq \left(\sqrt{\frac{1}{16}}+\sqrt{\frac{1}{4}}+\sqrt{1}\right)^2\)

\(\Leftrightarrow P(x+y+z)\geq \frac{49}{16}\)

\(\Leftrightarrow P\geq \frac{49}{16}\) (do \(x+y+z=1\) )

Vậy \(P_{\min}=\frac{49}{16}\) tại \((x,y,z)=(\frac{1}{7}; \frac{2}{7}; \frac{4}{7})\)

19 tháng 3 2017

Ta có:

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu bằng xảy ra khi  

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)  

19 tháng 3 2017

hahaha hoa tọa cx phải dj hỏi hả

12 tháng 4 2018

Áp dụng BĐT Shwarz:

\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)

\(\ge\dfrac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)

Dấu " = " khi \(\dfrac{1}{16x}=\dfrac{2}{16y}=\dfrac{4}{16z}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)

Vậy...

12 tháng 4 2018

Nguyễn Huy Tú lâu quá k thấy on

18 tháng 8 2018

Ta có : \(P=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)( Vì \(x+y+z=1\) )

Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :

\(\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{4\sqrt{x}}+\sqrt{y}.\dfrac{1}{2\sqrt{y}}+\sqrt{z}.\dfrac{1}{\sqrt{z}}\right)^2=\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2=\dfrac{49}{16}\)

Dấu \("="\) xảy ra khi \(x=\dfrac{1}{7}\) ; \(y=\dfrac{2}{7}\) ; \(z=\dfrac{4}{7}\)

18 tháng 8 2018

Hỏi đáp Toán

nếu không hiểu hỏi lại mình nhé!!!

NV
4 tháng 1 2019

\(M=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{4}{y^2}+\dfrac{16}{z^2}\right)\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)

\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)

NV
17 tháng 2 2019

\(M=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{16}{z}\right)=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2^2}{y}+\dfrac{4^2}{z}\right)\)

\(\Rightarrow M\ge\dfrac{1}{16}\dfrac{\left(1+2+4\right)^2}{x+y+z}=\dfrac{1}{16}.\dfrac{49}{1}=\dfrac{49}{16}\)

\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x+y+z=1\\\dfrac{1}{x}=\dfrac{2}{y}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)

7 tháng 3 2021

\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1\div16}{16x\div16}+\frac{1\div4}{4y\div4}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\left(\frac{7}{4}\right)^2}{1}=\frac{49}{16}\)

Đẳng thức xảy ra khi \(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}=\frac{\frac{1}{16}+\frac{1}{4}+1}{x+y+z}=\frac{21}{16}\)=> \(\hept{\begin{cases}x=\frac{1}{21}\\y=\frac{4}{21}\\z=\frac{16}{21}\end{cases}}\)

Vậy MinP = 49/16

19 tháng 3 2017

\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(M=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}=\dfrac{1^2}{16x}+\dfrac{2^2}{16y}+\dfrac{4^2}{16z}\)

\(\ge\dfrac{\left(1+2+4\right)^2}{16x+16y+16z}=\dfrac{7^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)

19 tháng 3 2017

@Ace Legona tớ chưa học BĐT Cauchy-Schwarz ! Có cách giải khác không?

18 tháng 4 2017

Áp dụng BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\geq \) \(\dfrac{4}{x+y}\) \(\Leftrightarrow\) \(\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\geq\) \(\dfrac{1}{x+y}\)

Ta có: \(\dfrac{1}{2x+y+z}\)=\(\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\)\(\leq\)\(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)\(\leq\)\(\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+z}\right)\right)\)=\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)(1)

Chứng minh tương tự,ta có:

\(\dfrac{1}{x+2y+z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)(2)

\(\dfrac{1}{x+y+2z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)(3)

Đặt: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) là VT

Cộng các BĐT(1),(2),(3) lại với nhau ta được:

VT \(\leq\)\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

\(\Leftrightarrow\) VT \(\leq\) \(\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)\)=\(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)=\(\dfrac{1}{4}.4=1\)

\(\Leftrightarrow\) \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) \(\leq\) 1

Dấu = xảy ra khi x=y=z=\(\dfrac{3}{4}\)

18 tháng 4 2017

bài này dễ mà