Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu bằng xảy ra khi
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng BĐT Shwarz:
\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)
\(\ge\dfrac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)
Dấu " = " khi \(\dfrac{1}{16x}=\dfrac{2}{16y}=\dfrac{4}{16z}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)
Vậy...
Ta có : \(P=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)( Vì \(x+y+z=1\) )
Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :
\(\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{4\sqrt{x}}+\sqrt{y}.\dfrac{1}{2\sqrt{y}}+\sqrt{z}.\dfrac{1}{\sqrt{z}}\right)^2=\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2=\dfrac{49}{16}\)
Dấu \("="\) xảy ra khi \(x=\dfrac{1}{7}\) ; \(y=\dfrac{2}{7}\) ; \(z=\dfrac{4}{7}\)
\(M=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{4}{y^2}+\dfrac{16}{z^2}\right)\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)
\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)
\(M=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{16}{z}\right)=\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2^2}{y}+\dfrac{4^2}{z}\right)\)
\(\Rightarrow M\ge\dfrac{1}{16}\dfrac{\left(1+2+4\right)^2}{x+y+z}=\dfrac{1}{16}.\dfrac{49}{1}=\dfrac{49}{16}\)
\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\left\{{}\begin{matrix}x+y+z=1\\\dfrac{1}{x}=\dfrac{2}{y}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{7}\\y=\dfrac{2}{7}\\z=\dfrac{4}{7}\end{matrix}\right.\)
\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1\div16}{16x\div16}+\frac{1\div4}{4y\div4}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\left(\frac{7}{4}\right)^2}{1}=\frac{49}{16}\)
Đẳng thức xảy ra khi \(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\frac{1}{16}}{x}=\frac{\frac{1}{4}}{y}=\frac{1}{z}=\frac{\frac{1}{16}+\frac{1}{4}+1}{x+y+z}=\frac{21}{16}\)=> \(\hept{\begin{cases}x=\frac{1}{21}\\y=\frac{4}{21}\\z=\frac{16}{21}\end{cases}}\)
Vậy MinP = 49/16
\(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(M=\dfrac{1}{16x}+\dfrac{4}{16y}+\dfrac{16}{16z}=\dfrac{1^2}{16x}+\dfrac{2^2}{16y}+\dfrac{4^2}{16z}\)
\(\ge\dfrac{\left(1+2+4\right)^2}{16x+16y+16z}=\dfrac{7^2}{16\left(x+y+z\right)}=\dfrac{49}{16}\)
@Ace Legona tớ chưa học BĐT Cauchy-Schwarz ! Có cách giải khác không?
Áp dụng BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\geq \) \(\dfrac{4}{x+y}\) \(\Leftrightarrow\) \(\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\geq\) \(\dfrac{1}{x+y}\)
Ta có: \(\dfrac{1}{2x+y+z}\)=\(\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\)\(\leq\)\(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)\(\leq\)\(\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+z}\right)\right)\)=\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)(1)
Chứng minh tương tự,ta có:
\(\dfrac{1}{x+2y+z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)(2)
\(\dfrac{1}{x+y+2z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)(3)
Đặt: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) là VT
Cộng các BĐT(1),(2),(3) lại với nhau ta được:
VT \(\leq\)\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
\(\Leftrightarrow\) VT \(\leq\) \(\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)\)=\(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)=\(\dfrac{1}{4}.4=1\)
\(\Leftrightarrow\) \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) \(\leq\) 1
Dấu = xảy ra khi x=y=z=\(\dfrac{3}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)(x+y+z)\geq \left(\sqrt{\frac{1}{16}}+\sqrt{\frac{1}{4}}+\sqrt{1}\right)^2\)
\(\Leftrightarrow P(x+y+z)\geq \frac{49}{16}\)
\(\Leftrightarrow P\geq \frac{49}{16}\) (do \(x+y+z=1\) )
Vậy \(P_{\min}=\frac{49}{16}\) tại \((x,y,z)=(\frac{1}{7}; \frac{2}{7}; \frac{4}{7})\)