K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Đặt biểu thức trên là A

Áp dụng bđt cosi:

\(x^5+\frac{1}{x}\ge2x^2\)

\(y^5+\frac{1}{y}\ge2y^2\)

\(z^5+\frac{1}{y}\ge2y^2\)

\(=>A\ge2.\left(x^2+y^2+z^2\right)\)

\(=>A\ge\frac{2.3.\left(a^2+b^2+c^2\right)}{3}\ge\frac{2.\left(a^2+b^2+c^2\right)}{3}=6\)(bđt bunhiacopxki)

Dấu "="xảy ra khi x = y = z = 1

21 tháng 2 2020

Chứng minh:



2/ Cho  nguyên dương. Chứng minh rằng:

21 tháng 2 2020

link mik nha

20 tháng 3 2016

ba so nguyen duong la 2;3;6 

k mk nha

25 tháng 12 2016

giúp mình với . mình đang cần gấp nhé!

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
Ta có:
$A> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$

Mặt khác:

$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z$ nguyên dương.

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$

Hoàn toàn tương tự:

$\frac{y}{y+z}< \frac{x+y}{x+y+z}$

$\frac{z}{z+x}< \frac{z+y}{z+y+x}$

Cộng các BĐT trên lại ta có:
$A< \frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}+\frac{z+x}{x+y+z}=2(2)$

Từ $(1); (2)\Rightarrow 1< A< 2$ nên $A$ không thể có giá trị nguyên.

các bạn trả lời nhanh mình đang vội

28 tháng 3 2020

a) | x + 5 | - ( -17 ) = 20

=> | x + 5 | = 3

=> x + 5 = 3 hoặc x + 5 = -3

=> x = -2 hoặc x = -8

31 tháng 7 2016

Ta có:

A = ( -x + y - z) - ( y - x ) - ( x- z )

A = -x + y - z - y + x - x + z

A = ( -x + x ) + ( y - y ) - ( z - z )

A =  0 + 0 - 0 = 0

=> ĐPCM

Vậy giá trị của biểu thức A luôn dương

K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !

31 tháng 7 2016

Lộn x > -3 sau đó các bạn tự suy ra nha!