Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=1, y=2, z=3, x+y+z=6. Cách giải thì mình không biết, nhưng chắc chắn bằng 6 đấy.
1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)
mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)
=>\(x+y+z=< 3\)
ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy schwarz)
1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)
M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)
M đạt GTLN khi a=1, b=2 hay x=2; y= 8
2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)
x=-4 => (y+4)2 =4 <=> y = -2;y = -6
x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)
x=0 => y2 = 4 => y =2; =-2
vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)
3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh
3) sửa lại
áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))
dấu '=' khi x=y=z
A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A <2 (1)
mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A >1 (2)
từ (1) và (2) => 1<A<2 => A ko phải là số nguyên
Bạn Hiếu làm đúng rồi đấy!