\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{0\Rightarrow\left(yz+xz+xy\right)}{xyz}=0\Rightarrow xy+xz+xy=0\)

ta có x2+2yz=x2+yz+yz=x2-yz-zx-xy=x.(x-z)-y.(x-z)=(x-y).(x-z)

tương tự ta có:x2+2xy=(x-z)*(y-z)

vậy\(A=\dfrac{yz}{\left(x-y\right).\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)a

\(A=\dfrac{yz\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{xz\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}+\dfrac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(y-z\right)\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)

NV
12 tháng 3 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

6 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

13 tháng 3 2017

dài đấy

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ < =>xy+yz+xz=0\\ < =>\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-yz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

cmtt

\(=>\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A = ...

= \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\)

=\(\dfrac{yz+xz+xy}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

mà xy + yz + xz = 0

=> (1) = 0

=> a = 0

10 tháng 1 2018

Pạn tham khảo cách làm nha!!!

Rút gọn phân thức

Chúc pạn hok tốt!!!

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh

25 tháng 7 2018

Từ \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) + \(\dfrac{1}{z}\) = 0

\(=>yz+xz+xy=0\)

\(=>yz=-xz-xy\)

Ta có : \(x^2+2yz=x^2+yz+yz=x^2+yz-yx-xz=\left(y-x\right)\left(z-x\right)=-\left(x-y\right)\left(z-x\right)\)

Tương tư :

\(y^2+2xz=y^2+xz+xz=y^2+xz-xy-yz=\left(y-x\right)\left(y-z\right)=-\left(x-y\right)\left(y-z\right)\)

\(z^2+2xy=z^2+xy+xy=z^2+xy-yz-xz=\left(z-y\right)\left(z-x\right)=-\left(y-z\right)\left(z-x\right)\)Nên A = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)

=\(\dfrac{-yz}{\left(x-y\right)\left(z-x\right)}+\dfrac{-xz}{\left(x-y\right)\left(y-z\right)}+\dfrac{-xy}{\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{(-y^2z+yz^2-z^2x+x^2z-x^2y+xy^2)+(xyz-xyz)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{\left(xyz-y^2z-z^2x+yz^2\right)+\left(-x^2y+xy^2+x^2z-xyz\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{z\left(xy-y^2-xz+zy\right)-x\left(xy-y^2-xz+zy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{\left(z-x\right)\left(xy-y^2-xz+zy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=\(\dfrac{\left(z-x\right)\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

=1

25 tháng 7 2018

= =" ... bài này làm dài ..bấm máy mỏi tay lắm...

nhanh gọn lẹ.... A = 0

NV
5 tháng 1 2019

\(\dfrac{21}{4x}+\dfrac{21}{4y}+\dfrac{21}{4z}=0\Leftrightarrow\dfrac{21}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\)

\(\Leftrightarrow\dfrac{xy+xz+yz}{xyz}=0\Leftrightarrow xy+xz+yz=0\) \(\Rightarrow\left\{{}\begin{matrix}xy=-xz-yz\\xz=-xy-yz\\yz=-xy-xz\end{matrix}\right.\)

Ta có:

\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự ta có \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(\Rightarrow A=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-x\right)\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{z^2\left(x-y\right)-z\left(x^2-y^2\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(z^2-xz-yz+xy\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{\left(x\left(y-z\right)-z\left(y-z\right)\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-z\right)\left(y-z\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)