Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
\(\Rightarrow M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\dfrac{-xyz}{8xyz}=\dfrac{-1}{8}\)
TH2: \(x+y+z\ne0\)
\(\Rightarrow2x+2y-z=3\)
\(\Rightarrow2x+2y=4z\)
\(\Rightarrow x+y=2z\)
\(x+z=2y\)
\(y+z=2x\)
\(\Rightarrow M=\dfrac{2z.2y.2x}{8xyz}=1\)
Vậy: \(M=\dfrac{-1}{8}\) hoặc \(1\)
Ta có \(\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x+2y-z}{z}=3\\\dfrac{2x+2z-y}{y}=3\\\dfrac{2y+2z-x}{x}=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+2y-z=3z\\2x+2z-y=3y\\2y+2z-x=3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+2y=4z\\2x+2z=4y\\2y+2z=4x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=2z\\x+z=2y\\y+z=2x\end{matrix}\right.\)
Ta có \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}\)
\(\Rightarrow M=\dfrac{2x.2y.2z}{8xyz}=\dfrac{8xyz}{8xyz}=1\)
Vậy \(M=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{-x+2y+2z}{x}=\dfrac{2x+2y-z+2x-y+2z-x+2y+2x}{x+y+z}=\dfrac{3x+3y+3z}{x+y+z}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)
\(\Rightarrow\)\(\dfrac{2x+2y-z}{z}=3\Leftrightarrow2x+2y-z=3z\Leftrightarrow2\left(x+y\right)=4z\Leftrightarrow x+y=2z\Leftrightarrow z=\dfrac{x+y}{2}\)
Tương tự: \(x=\dfrac{y+z}{2}\)
\(y=\dfrac{x+z}{2}\)
Thay vào M, ta được:
\(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(\dfrac{y+z}{2}.\dfrac{x+z}{2}.\dfrac{x+y}{2}\right).8}\)
\(=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8}.8}=1\)
Đề nhảm.a;b;c ở đâu bạn -_-
a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\\\dfrac{y}{2y+x+z}=\dfrac{y}{x+y+y+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)\\\dfrac{z}{2z+x+y}=\dfrac{z}{x+z+y+z}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z>0\)
b) Áp dụng bất đẳng thức AM-GM:
\(\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le\dfrac{\left(a+b-c+a-b+c\right)^2}{4}=\dfrac{4a^2}{4}=a^2\\\left(a-b+c\right)\left(-a+b+c\right)\le\dfrac{\left(a-b+c-a+b+c\right)^2}{4}=\dfrac{4c^2}{4}=c^2\\\left(a+b-c\right)\left(-a+b+c\right)\le\dfrac{\left(a+b-c-a+b+c\right)^2}{4}=\dfrac{4b^2}{4}=b^2\end{matrix}\right.\)
Nhân theo vế: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c>0\)
Phải chứng minh BĐT trung gian: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\forall\) a,b trước khi áp dụng chứ.
Bạn xét 2 trường hợp.
Nếu x+y+z=0 thì suy ra x+y=-z;y+z=-x;z+x=-y
Nếu x+y+z khác 0 thì áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
TH1 : \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(\Leftrightarrow M=\dfrac{\left(-z\right)\left(-x\right)\left(-y\right)}{8xyz}=\dfrac{-\left(xyz\right)}{8xyz}=\dfrac{-1}{8}\)
Th2 : \(x+y+z\ne0\)
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-2z+y}{y}=\dfrac{2y+2z-x}{x}\)
\(\Leftrightarrow\left(\dfrac{2x+2y-z}{z}+3\right)=\left(\dfrac{2x-2z+y}{y}+3\right)=\left(\dfrac{2y+2z-x}{x}+3\right)\)
\(\Leftrightarrow\dfrac{2x+2y+2z}{z}=\dfrac{2x+2y+2z}{y}=\dfrac{2x+2y+2z}{x}\)
\(\Leftrightarrow x=y=z\)
\(\Leftrightarrow M=\dfrac{2x.2y.2z}{8xyz}=1\)
Vậy \(\left[{}\begin{matrix}M=\dfrac{-1}{8}\Leftrightarrow x+y+z=0\\M=1\Leftrightarrow x+y+z\ne0\end{matrix}\right.\)
Tại sao \(\dfrac{2x-2z+y}{y}+3=\dfrac{2x+2y+2z}{y}\)