Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
\(P=4\left(\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}\right)=4\left(\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\right)\)
\(\ge\frac{4\left(a+b+c\right)^2}{xy+4x+yz+4y+zx+4z}=\frac{4.12^2}{4.12+\left(xy+yz+zx\right)}\)
\(\ge\frac{4.12^2}{4.12+\frac{\left(x+y+z\right)^2}{3}}=\frac{4.12^2}{4.12+\frac{12^2}{3}}=6\)
Ta có
\(\frac{x}{\sqrt{y}}+\frac{x}{\sqrt{y}}+\frac{xy}{8}\ge3\sqrt[3]{\frac{x}{\sqrt{y}}.\frac{x}{\sqrt{y}}.\frac{xy}{8}}=\frac{3x}{2}\)
Tương tự cho 2 cái kia
Cộng lại theo vế:
\(2M\ge\frac{3}{2}\left(x+y+z\right)-\frac{xy+yz+zx}{8}\ge\frac{3}{2}\left(x+y+z\right)-\frac{\left(x+y+z\right)^2}{24}\ge12\)
Vậy \(M\ge6\)
Để lên lớp 9 rồi em giải cho
Mà em thấy CTV đâu rồi nhỉ
Các bn CTV phải giúp đỡ tình trạng thế này nhé
Chúc bn hok giỏi , sớm có người giải cho bn bài này
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
Ta có : \(P^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{xy}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Xét \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4.\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)\(\Rightarrow\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}\ge4x-z\)
\(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4.\sqrt[4]{\frac{y^2}{z}.\frac{y\sqrt{z}}{\sqrt{x}}.\frac{y\sqrt{z}}{\sqrt{x}}.x}=4y\)\(\Rightarrow\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}\ge4y-x\)
\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4.\sqrt[4]{\frac{z^2}{x}.\frac{z\sqrt{x}}{\sqrt{y}}.\frac{z\sqrt{x}}{\sqrt{y}}.y}=4z\)\(\Rightarrow\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}\ge4z-y\)
Suy ra \(P^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)=36\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x = y = z = 4
Vậy Min P = 6 khi x = y = z = 4