K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

25 tháng 8 2019

\(1=\left(x+y+z\right)^2\ge4x\left(y+z\right)\Rightarrow x\le\frac{1}{4\left(y+z\right)}\)

Do đó \(A\ge y+z-16yz.\frac{1}{4\left(y+z\right)}+2017\)

\(=y+z-\frac{4yz}{y+z}+2017\ge y+z-\frac{\left(y+z\right)^2}{y+z}+2017=2017\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{4};\frac{1}{4}\right)\)

Is that true?

25 tháng 8 2019

Bí quá thì làm cách sau đây cũng được:v

Đặt A= f(x;y;z) và \(t=\frac{y+z}{2}>0\). Xét hiệu:

\(f\left(x;y;z\right)-f\left(x;t;t\right)=16x\left(t^2-yz\right)\ge0\)

Do đó \(f\left(x;y;z\right)\ge f\left(x;t;t\right)=f\left(1-2t;t;t\right)\) (do cách chọn t)

Ta sẽ tìm min của \(f\left(1-2t;t;t\right)=2t-16\left(1-2t\right)t^2+2017\)

\(=2t\left(4t-1\right)^2+2017\ge2017\)

Đẳng thức xảy ra khi \(y=z=t=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)

12 tháng 6 2020

\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Mà theo BĐT AM - GM ta có tiếp:

\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z=1

Vậy..................

9 tháng 4 2019

Áp dụng bđt Cô-si cho 2 số dương, ta có

\(A=xyz\le\frac{\left(x+y\right)^2z}{4}=\frac{\left(x+y\right)\left(100-z\right)z}{4}\) (Vì\(x+y+z=100\)

\(A\le\frac{\left(x+y\right)3\left(100-z\right)2z}{24}\le\frac{\left(x+y\right)\left(300-3z+2z\right)^2}{24}=\frac{\left(x+y\right)\left(300-z\right)^2}{96}\)

Mà \(z\ge60\) \(x+y+z=100\Rightarrow x+y\le40\)

\(\Rightarrow A\le\frac{40\left(300-60\right)^2}{96}=24000\) 

Dấu '=' xảy ra khi \(z=60;x=y=40\)

9 tháng 4 2019

dòng cuối mình viết lộn nha \(x=y=20\) chứ

10 tháng 6 2019

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)

Dấu "=" xảy ra khi:

\(x=y=z=\frac{2}{3}\)

10 tháng 6 2019

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\)  ( 1 )

Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\)                                       ( 2 )

                \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)                                          ( 3 )

Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :

\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)

\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\) 

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)