K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(P=4\left(\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}\right)=4\left(\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\right)\)

\(\ge\frac{4\left(a+b+c\right)^2}{xy+4x+yz+4y+zx+4z}=\frac{4.12^2}{4.12+\left(xy+yz+zx\right)}\)

\(\ge\frac{4.12^2}{4.12+\frac{\left(x+y+z\right)^2}{3}}=\frac{4.12^2}{4.12+\frac{12^2}{3}}=6\)

3 tháng 8 2017

Ta có

\(\frac{x}{\sqrt{y}}+\frac{x}{\sqrt{y}}+\frac{xy}{8}\ge3\sqrt[3]{\frac{x}{\sqrt{y}}.\frac{x}{\sqrt{y}}.\frac{xy}{8}}=\frac{3x}{2}\)

Tương tự cho 2 cái kia

Cộng lại theo vế:

\(2M\ge\frac{3}{2}\left(x+y+z\right)-\frac{xy+yz+zx}{8}\ge\frac{3}{2}\left(x+y+z\right)-\frac{\left(x+y+z\right)^2}{24}\ge12\)

Vậy  \(M\ge6\)