Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)
TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)
TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)
PT đã cho suy ra thành
\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)
\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)
\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)
Do
\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)
máy cái bạn tự suy ra cx thế
\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)
ta có
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)
Ta có:
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)
\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)
Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)
và với mọi a; b ; c ; d khác 0 có:
\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)
\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);
\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);
\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)
=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)
\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)
Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)
<=> x = y = z = t = 0
Thay vào T ta có : T = 0
Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)
\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)
Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)
\(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)
Vậy ,,,,,,,,,,,,,,,,,,
a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\)
\(\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}\Rightarrow x-y=\frac{y-z}{yz}\)
Tương tự: \(y-z=\frac{z-x}{xz},z-x=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{yz}.\frac{z-x}{xz}.\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)(1)
Mà x,y,z đoi 1 khác nhau nên: \(x-y\ne0,y-z\ne0,z-x\ne0\)(2)
Từ (1) và (2) ta được: \(1-\frac{1}{x^2y^2z^2}=0\Rightarrow x^2y^2z^2=1\)
Vậy \(A=x^4y^4z^4=\left(x^2y^2z^2\right)^2=1^2=1\)
Chúc bạn học tốt.