Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{x+2y}\)(1)
Từ GT x + 2y ≤ 3z => \(\frac{1}{x+2y}\ge\frac{1}{3z}\)<=> \(\frac{9}{x+2y}\ge\frac{3}{z}\)(2)
Từ (1) và (2) => \(\frac{1}{x}+\frac{2}{y}\ge\frac{9}{x+2y}\ge\frac{3}{z}\)=> \(\frac{1}{x}+\frac{2}{y}\ge\frac{3}{z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z=1
Giá trị nhỏ nhất là 1/8
\(\dfrac{1}{8}\)