K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Ta có \(\dfrac{x}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy}{2}\)

Tương tự ta có \(\Sigma\left(\dfrac{x}{1+y^2}\right)\ge\Sigma\left(x-\dfrac{xy}{2}\right)=3-\left(\dfrac{xy+yz+xz}{2}\right)\)

Theo hệ quả của bđt Cauchy ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow3\ge xy+yz+xz\Rightarrow3-\left(\dfrac{xy+yz+xz}{2}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge\dfrac{3}{2}\) ( 1 )

Ta lại có \(\dfrac{1}{1+y^2}=1-\dfrac{y^2}{1+y^2}\ge1-\dfrac{y}{2}\)

Tương tự ta có \(\Sigma\left(\dfrac{1}{1+y^2}\right)\ge\Sigma\left(1-\dfrac{y}{2}\right)=3-\left(\dfrac{x+y+z}{2}\right)=3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}+\dfrac{1}{1+x^2}\ge\dfrac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow Q\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)

Vậy \(Q_{min}=3\)

Dấu '' = '' xảy ra khi \(x=y=z=1\)

21 tháng 5 2018

Trần Hoàng Nghĩa,Phạm Nguyễn Tất Đạt, ngonhuminh,......giúp e vs!!!!!!E cảm ơn trước

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:

Bạn cần bổ sung điều kiện $x,y,z>0$

\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)

\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)

Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$

Xét hiệu:

\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$

$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:

$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$

NV
30 tháng 12 2021

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

31 tháng 12 2021

Anh ơi! Dấu bằng xảy ra là x+y+z =2 và cái nào nữa ạ anh

Y
23 tháng 5 2019

https://hoc24.vn/hoi-dap/question/811405.html

tham khảo ở đây nhé!!!

lm rồi, k muốn lm lại

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

11 tháng 10 2021

ai lm dc bài này ko ạ. mik đang cần lắmkhocroi

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3