Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
Ta có biểu thức:
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
\(=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)+\left(y+1\right)\left(1-\frac{z^2}{z^2+1}\right)+\left(z+1\right)\left(1-\frac{x^2}{x^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y}{2}\right)+\left(y+1\right)\left(1-\frac{z}{2}\right)+\left(z+1\right)\left(1-\frac{x}{2}\right)\)
\(\Leftrightarrow Q\ge\left(x+y+z+3\right)-\frac{xy+yz+xz+x+y+z}{2}\)
\(\Leftrightarrow Q\ge6-\frac{xy+yz+xz+3}{2}\)
Mà \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)
\(\Rightarrow Q\ge6-\frac{3+3}{2}=3\)
Vậy Min Q=3. Dấu "=" xảy ra khi và chỉ khi x=y=z=1
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(x^2+z^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
\(=\frac{1}{x\left(\frac{1}{y^2}+\frac{1}{z^2}\right)}+\frac{1}{y\left(\frac{1}{z^2}+\frac{1}{x^2}\right)}+\frac{1}{z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì \(a^2+b^2+c^2=1\) Ta cần chứng minh:
\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Theo đánh giá bởi AM - GM ta có:
\(a^2\left(1-a^2\right)^2=\frac{1}{2}\cdot2a^2\cdot\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)^2\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{a^2}{a\left(1-a\right)^2}\ge\frac{3\sqrt{3}}{2}a^2\)
Tương tự rồi cộng lại ta có ngay điều phải chứng minh
Áp dụng bđt AM-GM ta được:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)
Cộng từng vế các bất đẳng thức trên ta được
\(A+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Cách 2:Dù dài hơn Lê Tài Bảo Châu
\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)
\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)
Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )
Cách 3:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn
\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)
Dấu = xảy ra <=>x=y=z=1
đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)
Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)
Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)
\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)
\(\Rightarrow E\ge\frac{3}{2}\)
Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(Q=\frac{x+1}{y^2+1}+\frac{y+1}{z^2+1}+\frac{z+1}{x^2+1}=(x+1)-\frac{y^2(x+1)}{y^2+1}+(y+1)-\frac{z^2(y+1)}{z^2+1}+(z+1)-\frac{x^2(z+1)}{x^2+1}\)
\(=(x+y+z+3)-\left[\frac{y^2(x+1)}{y^2+1}+\frac{z^2(y+1)}{z^2+1}+\frac{x^2(z+1)}{x^2+1}\right]\)
\(\geq (x+y+z+3)-\left[\frac{y^2(x+1)}{2y}+\frac{z^2(y+1)}{2z}+\frac{x^2(z+1)}{2x}\right]\)
\(\Leftrightarrow Q\geq x+y+z+3-\frac{x+y+z+xy+yz+xz}{2}(1)\)
Tiếp tục sử dụng BĐT AM-GM ta có BĐT quen thuộc là:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x+y+z)(xy+yz+xz)\)
\(\Leftrightarrow x+y+z\geq xy+yz+xz(2)\)
Từ \((1);(2)\Rightarrow Q\geq x+y+z+3-\frac{x+y+z+x+y+z}{2}=3\)
Vậy GTNN của biểu thức là $3$. Dấu "=" xảy ra khi $x=y=z=1$
BĐT AM - GM là gì vậy ?