\(x^2+y^2+z^2\le6\)  Tìm giá trị nhỏ nhất của biểu thức ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

15 tháng 10 2017

Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)

\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)

Áp dụng bđt AM - GM ta có :

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)

\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)

Cộng vế với vế ta được :

\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 10 2017

Đức Hùng hình như áp dụng sai  ( ngược dấu ) BĐT Bunhiacopxki rồi

21 tháng 9 2019

???

19 tháng 9 2019

Bài này đơn giản nhất nên xơi trước:D

\(A^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(x^2+y^2+z^2\right)=3\) (áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\))

Suy ra \(A\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

11 tháng 9 2021

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

4 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)

TT...

\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)

\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)

\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)

Vậy GTNN của Q là 3 khi x = y = z = 1