Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa lại đề là \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
Ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
\(\Rightarrow\frac{4.\left(3x-2y\right)}{16}=\frac{3.\left(2z-4x\right)}{9}=\frac{2.\left(4y-3z\right)}{4}.\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{29}=\frac{0}{29}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3x-2y}{4}=0\\\frac{2z-4x}{3}=0\\\frac{4y-3z}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{matrix}\right.\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
12x - 8y = 0
<=> {6z - 12x = 0
8y - 6z = 0
x/2 = y/3
<=> {z/4 = x/2
y/3 = z/4
<=> x/2 = y/3 = z/4
Vậy<=> x/2 = y/3 = z/4
![](https://rs.olm.vn/images/avt/0.png?1311)
do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0
\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0
mà (a-b)2+(b-c)2=0 (đề bài cho)
\(\Rightarrow\)(a-b)2=0;(b-c)2=0
\(\Rightarrow\)a-b=b-c=0
\(\Rightarrow\)a=b=c
Vậy tam giác ABC đều
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Leftrightarrow\hept{\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{z}{4}=\frac{x}{2}\end{cases}}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Vậy \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) (Đpcm)
cho tam giac ABC co trung tuyen AM va AM=1/2BC . chung minh tam giac ABC vuong
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔOAD và ΔOCB có
OA=OC
góc AOD chung
OD=OB
Do đo: ΔOAD=ΔOCB
Suy ra: AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
b: Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: Ta có; ΔIAB=ΔICD
nên IB=ID
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó;ΔOIB=ΔOID
Suy ra: \(\widehat{BOI}=\widehat{DOI}\)
hay OI là tia phân giác của góc xOy
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
mik nghĩ làm cách này có đúng không ta ?
<=> 2xy > (x^2+y^2-z^2)/(2xy)
ta có: z^2 = x^2 +y^2- 2xy.cos(x,y) => (x^2 +y^2 -z^2)/(2xy) = cos(x,y)
=> 2xy > cos(x,y) luôn đúng do 2xy>1>cos(x,y)
=> đpcm
tick mình mình giải cho