K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow x=k\)

     \(y=2k\)

     \(z=3k\)

Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)

\(=6k.\frac{6}{k}\)

\(=\frac{36k}{k}=36\)

=.= hok tốt!!

26 tháng 8 2018

Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

Do đó  \(x=k;y=2k;z=3k\)

Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có 

\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)

\(=6k.\frac{6+12+18}{6k}\)

\(=\frac{6k.\left(6+12+18\right)}{6k}\)

\(=36\)

Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

30 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

30 tháng 12 2016

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)

\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)

\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)

Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z

Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)

10 tháng 12 2015

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

20 tháng 2 2016

y+z+1+x+z+2+x+y-3/x+y+z=2(x+y+z)/x+y+z=2

nên x+y+z=1:2=0,5 suy ra x+y+z/2=0,5:2=1/4

28 tháng 8 2015

bạn đúng đề:

\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)

\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)

\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16

\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)