K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz

=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2

mà (1/x+1/y+1/z)^2=3

=>p=3-2=1

9 tháng 4 2017

có thể nhiều cách giải hãy chọn 1 cách

9 tháng 4 2017

khó hiểu

27 tháng 4 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)

Nếu   \(x+y+z=0\)thì   \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)

\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)

Nếu  \(x+y+z\ne0\)thì   \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)

suy ra:   \(\frac{x-y-z}{x}=-1\)            \(\Rightarrow\)       \(x-y-z=-x\)          \(\Rightarrow\)     \(y+z=2x\)

             \(\frac{-x+y-z}{y}=-1\)                     \(-x+y-z=-y\)                         \(x+z=2y\)

             \(\frac{-x-y+z}{z}=-1\)                    \(-x-y+z=-z\)                         \(x+y=2z\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)

\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)

1 tháng 1 2016

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3