Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)
\(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)
CM tương tự ta cũng có : \(x=y;y=z\)
\(\Rightarrow x=y=z\) Thay vào B ta được :
\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)
Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)
Ta có: zx + zy = xy + xz => zy = xy => z = x (1)
Ta có: x - z = x - x = 0
Ta có
\(3x=2y=>y=\frac{3}{2}x\)
Ta có
\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{x^2}{\left(\frac{3}{2}x\right)^2}=\frac{x^2}{\frac{9}{4}x^2}=\frac{4}{9}\)
tick nha
\(3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\)
\(\frac{x}{yz}:\frac{y}{zx}=\frac{xzx}{yzy}=\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)