K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

\(\dfrac{1}{2x}+\dfrac{1}{y}+\dfrac{1}{3z}=0\)

\(\dfrac{3yz+6xz+2xy}{6xyz}=0\)

⇔ 3yz + 6xz + 2xy = 0 (do x; y; z ≠ 0)

⇔ 2(3yz + 6xz + 2xy) = 0

Ta có:

2x + y + 3z = -4

⇔ (2x + y + 3z)2 = (-4)2

⇔ 4x2 + y2 + 9z2 + 2(2xy + 3yz + 6xz) = 16

⇔ 4x2 + y2 + 9z2 + 0 = 16 (do 2(3yz + 6xz + 2xy) = 0)

⇔ 4x2 + y2 + 9z2 = 16

Hay P = 16

Vậy P = 16

NV
22 tháng 3 2021

\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)

18 tháng 10 2021

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

Ta có:

\(\left\{\begin{matrix} x+2y+3z=4\\ \frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ \frac{6yz+2xy+3xz}{6xyz}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ 2xy+6yz+3xz=0\end{matrix}\right.\)

Do đó:

\((x+2y+3z)^2-2(2xy+6yz+3xz)=4^2-2.0=16\)

\(\Leftrightarrow x^2+4y^2+9z^2=16\)

\(\Leftrightarrow P=16\)

30 tháng 12 2020

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

30 tháng 12 2020

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

NV
10 tháng 1 2021

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

23 tháng 4 2017

Haha không giỡn nữa :v :focus:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(L.H.S=Σ\dfrac{1}{2x+y+z}=7Σ\dfrac{1}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(=\dfrac{1}{7}Σ\dfrac{\left(2+1+4\right)^2}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(\le\dfrac{1}{7}Σ\left(\dfrac{2^2}{2\left(x+3y\right)}+\dfrac{1^2}{y+3z}+\dfrac{4^2}{4\left(z+3x\right)}\right)\)

\(=\dfrac{1}{7}Σ\left(\dfrac{2}{x+3y}+\dfrac{1}{y+3z}+\dfrac{4}{z+3x}\right)\)

\(=\dfrac{1}{7}Σ\dfrac{7}{x+3y}=Σ\dfrac{1}{x+3y}=R.H.S\)

23 tháng 4 2017

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\le\dfrac{4}{x+y}\) \(\forall x,y>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+3y}+\dfrac{1}{y+2z+x}\le\dfrac{4}{2x+4y+2z}=\dfrac{2}{x+2y+z}\\\dfrac{1}{y+3z}+\dfrac{1}{z+2x+y}\le\dfrac{4}{2x+2y+4z}=\dfrac{2}{x+y+2z}\\\dfrac{1}{z+3x}+\dfrac{1}{x+2y+z}\le\dfrac{4}{4x+2y+2z}=\dfrac{2}{2x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}+\dfrac{1}{y+2z+x}+\dfrac{1}{z+2x+y}+\dfrac{1}{x+2y+z}\le\dfrac{2}{x+2y+z}+\dfrac{2}{x+y+2z}+\dfrac{2}{2x+y+z}\)

\(\Rightarrow VT\le\left(\dfrac{2}{x+2y+z}-\dfrac{1}{x+2y+z}\right)+\left(\dfrac{2}{x+y+2z}-\dfrac{1}{y+x+2z}\right)+\left(\dfrac{2}{2x+y+z}-\dfrac{1}{z+2x+y}\right)\)

\(\Rightarrow VT\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\)

\(\Leftrightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\) ( đpcm )

4 tháng 10 2017

Áp dụng bđt Cauchy Schwarz dạng Engel:

P=\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{3^2}{4.3}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1